BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 22066539)

  • 1. Structure and energy of non-canonical basepairs: comparison of various computational chemistry methods with crystallographic ensembles.
    Panigrahi S; Pal R; Bhattacharyya D
    J Biomol Struct Dyn; 2011 Dec; 29(3):541-56. PubMed ID: 22066539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies.
    Roy A; Panigrahi S; Bhattacharyya M; Bhattacharyya D
    J Phys Chem B; 2008 Mar; 112(12):3786-96. PubMed ID: 18318519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural stability of tandemly occurring noncanonical basepairs within double helical fragments: molecular dynamics studies of functional RNA.
    Halder S; Bhattacharyya D
    J Phys Chem B; 2010 Nov; 114(44):14028-40. PubMed ID: 20945881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Watson-Crick base pairing in RNA. quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family.
    Sponer JE; Spacková N; Kulhanek P; Leszczynski J; Sponer J
    J Phys Chem A; 2005 Mar; 109(10):2292-301. PubMed ID: 16838999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations.
    Mládek A; Sharma P; Mitra A; Bhattacharyya D; Sponer J; Sponer JE
    J Phys Chem B; 2009 Feb; 113(6):1743-55. PubMed ID: 19152254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction.
    Maiti S; Mukherjee D; Roy P; Chakrabarti J; Bhattacharyya D
    Biochim Biophys Acta Gen Subj; 2020 Jul; 1864(7):129600. PubMed ID: 32179130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Das J; Mukherjee S; Mitra A; Bhattacharyya D
    J Biomol Struct Dyn; 2006 Oct; 24(2):149-61. PubMed ID: 16928138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leading RNA tertiary interactions: structures, energies, and water insertion of A-minor and P-interactions. A quantum chemical view.
    Sponer JE; Réblova K; Mokdad A; Sychrovský V; Leszczynski J; Sponer J
    J Phys Chem B; 2007 Aug; 111(30):9153-64. PubMed ID: 17602515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical analysis of atomic contacts at RNA-protein interfaces.
    Treger M; Westhof E
    J Mol Recognit; 2001; 14(4):199-214. PubMed ID: 11500966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar edge/sugar edge base pairs in RNA: stabilities and structures from quantum chemical calculations.
    Sponer JE; Leszczynski J; Sychrovský V; Sponer J
    J Phys Chem B; 2005 Oct; 109(39):18680-9. PubMed ID: 16853403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of the scalar coupling constants across the noncovalent contacts in RNA base pairs: the cis- and trans-watson-crick/sugar edge base pair family.
    Vokacova Z; Sponer J; Sponer JE; Sychrovský V
    J Phys Chem B; 2007 Sep; 111(36):10813-24. PubMed ID: 17713941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Does Mg
    Halder A; Roy R; Bhattacharyya D; Mitra A
    Biophys J; 2017 Jul; 113(2):277-289. PubMed ID: 28506525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the role of the cis Hoogsteen:sugar-edge family of base pairs in platforms and triplets-quantum chemical insights into RNA structural biology.
    Sharma P; Sponer JE; Sponer J; Sharma S; Bhattacharyya D; Mitra A
    J Phys Chem B; 2010 Mar; 114(9):3307-20. PubMed ID: 20163171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.
    Mondal M; Mukherjee S; Halder S; Bhattacharyya D
    Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio quantum mechanics analysis of imidazole C-H...O water hydrogen bonding and a molecular mechanics forcefield correction.
    Ornstein RL; Zheng YJ
    J Biomol Struct Dyn; 1997 Jun; 14(6):657-65. PubMed ID: 9195335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis.
    Halder S; Bhattacharyya D
    J Phys Chem B; 2012 Oct; 116(39):11845-56. PubMed ID: 22953716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence dependent variations in RNA duplex are related to non-canonical hydrogen bond interactions in dinucleotide steps.
    Kailasam S; Bhattacharyya D; Bansal M
    BMC Res Notes; 2014 Feb; 7():83. PubMed ID: 24502340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations?
    Svozil D; Hobza P; Sponer J
    J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.