BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22066645)

  • 1. Ultra-conservative minimally invasive surgery (UCMIS) with pulsed non-Gaussian CO(2) laser beams focused through the shortest possible focal length.
    Canestri F
    Photomed Laser Surg; 2011 Nov; 29(11):759-66. PubMed ID: 22066645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal lesions produced by CO2 laser beams: new findings to improve the quality of minimally invasive and transmyocardial laser revascularization protocols.
    Canestri F
    J Clin Laser Med Surg; 2000 Apr; 18(2):49-55. PubMed ID: 11800102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sudden and unpredictable below-surface ablation pattern changes by CO2 laser beams: a qualitative description of five macroscopic cases observed in PMMA with high probability to occur during surgery in low-water-content tissues.
    Canestri F
    J Clin Laser Med Surg; 2002 Dec; 20(6):335-9. PubMed ID: 12513920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical absorption coefficient, time of thermal relaxation, time of surface threshold, and time of heat incubation for PMMA samples at the CO2 laser-beam wavelength of 10.6 microm.
    Canestri F
    Photomed Laser Surg; 2006 Oct; 24(5):655-9. PubMed ID: 17069500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro study of the soft tissue effects of microsecond-pulsed CO(2) laser parameters during soft tissue incision and sulcular debridement.
    Vaderhobli RM; White JM; Le C; Ho S; Jordan R
    Lasers Surg Med; 2010 Mar; 42(3):257-63. PubMed ID: 20333737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fluidodynamics of potentially neoplastic plumes produced by medical lasers: first quantitative non-tissue-specific measurements using PMMA samples (phase I).
    Canestri F
    J Clin Laser Med Surg; 1999 Oct; 17(5):199-203. PubMed ID: 11199823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computerized thermal characterization tool (CT)2 for complete thermodynamic coefficients mapping at the wavelength of 10.6 microm: a PMMA case report.
    Canestri F
    Photomed Laser Surg; 2009 Aug; 27(4):539-45. PubMed ID: 19694505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting clinical efficacy of photoangiolytic and cutting/ablating lasers using the chick chorioallantoic membrane model: implications for endoscopic voice surgery.
    Burns JA; Kobler JB; Heaton JT; Anderson RR; Zeitels SM
    Laryngoscope; 2008 Jun; 118(6):1109-24. PubMed ID: 18354337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate quantification of the optical absorption coefficient and of the thermal relaxation time for PMMA and for low-water-content media during early ablation with CO2 laser beam at the wavelength of 10.6 μm.
    Canestri F
    Photomed Laser Surg; 2011 Jan; 29(1):61-6. PubMed ID: 21219220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial clinical experience with a combined pulsed holmium-neodymium-YAG laser in minimally invasive neurosurgery.
    Büki A; Dóczi T; Vetö F; Horváth Z; Gallyas F
    Minim Invasive Neurosurg; 1999 Mar; 42(1):35-40. PubMed ID: 10228938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spot size characterization of focused non-Gaussian X-ray laser beams.
    Chalupský J; Krzywinski J; Juha L; Hájková V; Cihelka J; Burian T; Vysín L; Gaudin J; Gleeson A; Jurek M; Khorsand AR; Klinger D; Wabnitz H; Sobierajski R; Störmer M; Tiedtke K; Toleikis S
    Opt Express; 2010 Dec; 18(26):27836-45. PubMed ID: 21197057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimally invasive approach to laryngeal cleft.
    Watters K; Ferrari L; Rahbar R
    Laryngoscope; 2013 Jan; 123(1):264-8. PubMed ID: 22865688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic arm enhancement to accommodate improved efficiency and decreased resource utilization in complex minimally invasive surgical procedures.
    Geis WP; Kim HC; Brennan EJ; McAfee PC; Wang Y
    Stud Health Technol Inform; 1996; 29():471-81. PubMed ID: 10172847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Current state of doing minimal invasive total hip replacement in Germany, the use of new implants and navigation--results of a nation-wide survey].
    Sendtner E; Boluki D; Grifka J
    Z Orthop Unfall; 2007; 145(3):297-302. PubMed ID: 17607626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Classification of laser irradiation and safety measures].
    Takac S; Stojanović S
    Med Pregl; 1998; 51(9-10):415-8. PubMed ID: 9863331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimally invasive total knee arthroplasty: the importance of instrumentation.
    Tria AJ
    Orthop Clin North Am; 2004 Apr; 35(2):227-34. PubMed ID: 15062708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Total hip replacement from a MIS-AL approach (comparison with a standard anterolateral approach)].
    Kubes J; Landor I; Podskubka A; Majernícek M
    Acta Chir Orthop Traumatol Cech; 2009 Aug; 76(4):288-94. PubMed ID: 19755052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lasers for otosclerosis: CO2 vs. Argon and KTP-532.
    Lesinski SG; Palmer A
    Laryngoscope; 1989 Jun; 99(6 Pt 2 Suppl 46):1-8. PubMed ID: 2498587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimally invasive carpal tunnel decompression using the KnifeLight.
    Hwang PY; Ho CL
    Neurosurgery; 2007 Feb; 60(2 Suppl 1):ONS162-8; discussion ONS168-9. PubMed ID: 17297379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO(2) laser fiber soft cochleostomy: development of a technique using human temporal bones and a guinea pig model.
    Fishman AJ; Moreno LE; Rivera A; Richter CP
    Lasers Surg Med; 2010 Mar; 42(3):245-56. PubMed ID: 20333743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.