BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22066966)

  • 1. Highly efficient synthesis of quinoxalinone-N-oxide via tandem nitrosation/aerobic oxidative C-N bond formation.
    Kobayashi Y; Kuroda M; Toba N; Okada M; Tanaka R; Kimachi T
    Org Lett; 2011 Dec; 13(23):6280-3. PubMed ID: 22066966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical synthesis of quinoxalinones via palladium-catalyzed intramolecular N-arylations.
    Luo X; Chenard E; Martens P; Cheng YX; Tomaszewski MJ
    Org Lett; 2010 Aug; 12(16):3574-7. PubMed ID: 20704396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new efficient route for the formation of quinoxaline N-oxides and N,N'-dioxides using HOF.CH3CN.
    Carmeli M; Rozen S
    J Org Chem; 2006 Jul; 71(15):5761-5. PubMed ID: 16839160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot synthesis of pyrrolo[1,2-a]quinoxaline derivatives via iron-promoted aryl nitro reduction and aerobic oxidation of alcohols.
    Pereira Mde F; Thiéry V
    Org Lett; 2012 Sep; 14(18):4754-7. PubMed ID: 22971137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative tandem nitrosation/cyclization of N-aryl enamines with nitromethane toward 3-(trifluoromethyl)quinoxalines.
    Yang ZJ; Liu CZ; Hu BL; Deng CL; Zhang XG
    Chem Commun (Camb); 2014 Dec; 50(93):14554-7. PubMed ID: 25308914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ruthenium-catalyzed oxidative synthesis of 2-pyridones through C-H/N-H bond functionalizations.
    Ackermann L; Lygin AV; Hofmann N
    Org Lett; 2011 Jun; 13(12):3278-81. PubMed ID: 21612195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of N-alkyl isatins via oxidative cyclization of N-alkyl 2-bromo(chloro)acetanilides.
    Gui Q; Dai F; Liu J; Chen P; Yang Z; Chen X; Tan Z
    Org Biomol Chem; 2014 Jun; 12(21):3349-53. PubMed ID: 24740324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NHC-catalyzed oxidative cyclization reactions of 2-alkynylbenzaldehydes under aerobic conditions: synthesis of O-heterocycles.
    Park JH; Bhilare SV; Youn SW
    Org Lett; 2011 May; 13(9):2228-31. PubMed ID: 21446687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safe and reliable synthesis of diazoketones and quinoxalines in a continuous flow reactor.
    Martin LJ; Marzinzik AL; Ley SV; Baxendale IR
    Org Lett; 2011 Jan; 13(2):320-3. PubMed ID: 21162548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dehydrogenative N-incorporation: a direct approach to quinoxaline N-oxides under mild conditions.
    Chen F; Huang X; Li X; Shen T; Zou M; Jiao N
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10495-9. PubMed ID: 25098905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese(IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation.
    Kim SY; Park KH; Chung YK
    Chem Commun (Camb); 2005 Mar; (10):1321-3. PubMed ID: 15742065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of 1,2,4-triazoles via a copper-catalyzed tandem addition-oxidative cyclization.
    Ueda S; Nagasawa H
    J Am Chem Soc; 2009 Oct; 131(42):15080-1. PubMed ID: 19799379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach for C-C, C-N, and C-O bond formation reactions: a facile synthesis of benzophenazine, quinoxaline, and phenoxazine derivatives via ring opening of benzoxepines.
    Raju BC; Prasad KV; Saidachary G; Sridhar B
    Org Lett; 2014 Jan; 16(2):420-3. PubMed ID: 24328679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordinated assembly of a new 3D mesoporous Fe₃O₄@Cu₂O-graphene oxide framework as a highly efficient and reusable catalyst for the synthesis of quinoxalines.
    Wang Z; Hu G; Liu J; Liu W; Zhang H; Wang B
    Chem Commun (Camb); 2015 Mar; 51(24):5069-72. PubMed ID: 25712163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmentally friendly iron-catalyzed cascade synthesis of 1,2,4-benzothiadiazine 1,1-dioxide and quinazolinone derivatives.
    Yang D; Fu H; Hu L; Jiang Y; Zhao Y
    J Comb Chem; 2009; 11(4):653-7. PubMed ID: 19505074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A concise and versatile synthesis of viridicatin alkaloids from cyanoacetanilides.
    Kobayashi Y; Harayama T
    Org Lett; 2009 Apr; 11(7):1603-6. PubMed ID: 19256518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of highly functionalized polycyclic quinoxaline derivatives using visible-light photoredox catalysis.
    He Z; Bae M; Wu J; Jamison TF
    Angew Chem Int Ed Engl; 2014 Dec; 53(52):14451-5. PubMed ID: 25347967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of oximes to nitrile oxides with hypervalent iodine reagents.
    Mendelsohn BA; Lee S; Kim S; Teyssier F; Aulakh VS; Ciufolini MA
    Org Lett; 2009 Apr; 11(7):1539-42. PubMed ID: 19254039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pt(IV)-catalyzed hydroamination triggered cyclization: a strategy to fused pyrrolo[1,2-a]quinoxalines, indolo[1,2-a]quinoxalines, and indolo[3,2-c]quinolines.
    Patil NT; Kavthe RD; Shinde VS; Sridhar B
    J Org Chem; 2010 May; 75(10):3371-80. PubMed ID: 20392052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of 2-aminoquinoxalines via one-pot cyanide-based sequential reaction under aerobic oxidation conditions.
    Cho YH; Kim KH; Cheon CH
    J Org Chem; 2014 Feb; 79(3):901-7. PubMed ID: 24397555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.