These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22067159)

  • 1. A change in the radius of rotation of F1-ATPase indicates a tilting motion of the central shaft.
    Sugawa M; Okada KA; Masaike T; Nishizaka T
    Biophys J; 2011 Nov; 101(9):2201-6. PubMed ID: 22067159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative reaction pathway of F1-ATPase suggested by rotation without 80 degrees/40 degrees substeps of a sluggish mutant at low ATP.
    Shimabukuro K; Muneyuki E; Yoshida M
    Biophys J; 2006 Feb; 90(3):1028-32. PubMed ID: 16258036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemomechanical coupling of human mitochondrial F1-ATPase motor.
    Suzuki T; Tanaka K; Wakabayashi C; Saita E; Yoshida M
    Nat Chem Biol; 2014 Nov; 10(11):930-6. PubMed ID: 25242551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation.
    Shimabukuro K; Yasuda R; Muneyuki E; Hara KY; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14731-6. PubMed ID: 14657340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-sensitive reaction intermediate of F1-ATPase.
    Watanabe R; Iino R; Shimabukuro K; Yoshida M; Noji H
    EMBO Rep; 2008 Jan; 9(1):84-90. PubMed ID: 18064048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation.
    Nishizaka T; Oiwa K; Noji H; Kimura S; Muneyuki E; Yoshida M; Kinosita K
    Nat Struct Mol Biol; 2004 Feb; 11(2):142-8. PubMed ID: 14730353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulator of the F1 motor: inhibition of rotation of cyanobacterial F1-ATPase by the epsilon subunit.
    Konno H; Murakami-Fuse T; Fujii F; Koyama F; Ueoka-Nakanishi H; Pack CG; Kinjo M; Hisabori T
    EMBO J; 2006 Oct; 25(19):4596-604. PubMed ID: 16977308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single molecule energetics of F1-ATPase motor.
    Muneyuki E; Watanabe-Nakayama T; Suzuki T; Yoshida M; Nishizaka T; Noji H
    Biophys J; 2007 Mar; 92(5):1806-12. PubMed ID: 17158579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule analysis of the rotation of F₁-ATPase under high hydrostatic pressure.
    Okuno D; Nishiyama M; Noji H
    Biophys J; 2013 Oct; 105(7):1635-42. PubMed ID: 24094404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How release of phosphate from mammalian F1-ATPase generates a rotary substep.
    Bason JV; Montgomery MG; Leslie AG; Walker JE
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6009-14. PubMed ID: 25918412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate release in F1-ATPase catalytic cycle follows ADP release.
    Watanabe R; Iino R; Noji H
    Nat Chem Biol; 2010 Nov; 6(11):814-20. PubMed ID: 20871600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct identification of the rotary angle of ATP cleavage in F
    Hasimoto Y; Sugawa M; Nishiguchi Y; Aeba F; Tagawa A; Suga K; Tanaka N; Ueno H; Yamashita H; Yokota R; Masaike T; Nishizaka T
    Biophys J; 2023 Feb; 122(3):554-564. PubMed ID: 36560882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How subunit coupling produces the gamma-subunit rotary motion in F1-ATPase.
    Pu J; Karplus M
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1192-7. PubMed ID: 18216260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping the ATP binding state leads to a detailed understanding of the F1-ATPase mechanism.
    Nam K; Pu J; Karplus M
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17851-6. PubMed ID: 25453082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotation of the gamma subunit in F1-ATPase; evidence that ATP synthase is a rotary motor enzyme.
    Yasuda R; Noji H; Kinosita K; Motojima F; Yoshida M
    J Bioenerg Biomembr; 1997 Jun; 29(3):207-9. PubMed ID: 9298705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple mechanism whereby the F1-ATPase motor rotates with near-perfect chemomechanical energy conversion.
    Saita E; Suzuki T; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9626-31. PubMed ID: 26195785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependence of the rotation and hydrolysis activities of F1-ATPase.
    Furuike S; Adachi K; Sakaki N; Shimo-Kon R; Itoh H; Muneyuki E; Yoshida M; Kinosita K
    Biophys J; 2008 Jul; 95(2):761-70. PubMed ID: 18375515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled rotation of the F₁-ATPase reveals differential and continuous binding changes for ATP synthesis.
    Adachi K; Oiwa K; Yoshida M; Nishizaka T; Kinosita K
    Nat Commun; 2012; 3():1022. PubMed ID: 22929779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ATP-waiting conformation of rotating F1-ATPase revealed by single-pair fluorescence resonance energy transfer.
    Yasuda R; Masaike T; Adachi K; Noji H; Itoh H; Kinosita K
    Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9314-8. PubMed ID: 12876203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.