These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22068030)

  • 21. Culturing of glial and neuronal cells on polysialic acid.
    Haile Y; Haastert K; Cesnulevicius K; Stummeyer K; Timmer M; Berski S; Dräger G; Gerardy-Schahn R; Grothe C
    Biomaterials; 2007 Feb; 28(6):1163-73. PubMed ID: 17123601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel method for three-dimensional culture of central nervous system neurons.
    Puschmann TB; de Pablo Y; Zandén C; Liu J; Pekny M
    Tissue Eng Part C Methods; 2014 Jun; 20(6):485-92. PubMed ID: 24102451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adhesion and growth of electrically active cortical neurons on polyethylenimine patterns microprinted onto PEO-PPO-PEO triblockcopolymer-coated hydrophobic surfaces.
    Ruardij TG; van den Boogaart MA; Rutten WL
    IEEE Trans Nanobioscience; 2002 Mar; 1(1):4-11. PubMed ID: 16689215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of microchannels on neurite growth and architecture.
    Mahoney MJ; Chen RR; Tan J; Saltzman WM
    Biomaterials; 2005 Mar; 26(7):771-8. PubMed ID: 15350782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microcontact printing for precise control of nerve cell growth in culture.
    Wheeler BC; Corey JM; Brewer GJ; Branch DW
    J Biomech Eng; 1999 Feb; 121(1):73-8. PubMed ID: 10080092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuronal network morphology and electrophysiologyof hippocampal neurons cultured on surface-treated multielectrode arrays.
    Soussou WV; Yoon GJ; Brinton RD; Berger TW
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1309-20. PubMed ID: 17605362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patterning cells in highly deformable microstructures: effect of plastic deformation of substrate on cellular phenotype and gene expression.
    Hyun J; Chen J; Setton LA; Chilkoti A
    Biomaterials; 2006 Mar; 27(8):1444-51. PubMed ID: 16154191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering high-density endothelial cell monolayers on soft substrates.
    Feinberg AW; Schumacher JF; Brennan AB
    Acta Biomater; 2009 Jul; 5(6):2013-24. PubMed ID: 19269269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissociated cell culture for testing effects of carbon nanotubes on neuronal growth.
    Lee W; Parpura V
    Methods Mol Biol; 2012; 846():261-76. PubMed ID: 22367818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Culturing adult rat hippocampal neurons with long-interval changing media.
    Majd S; Zarifkar A; Rastegar K; Takhshid MA
    Iran Biomed J; 2008 Apr; 12(2):101-7. PubMed ID: 18506216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superior survival and durability of neurons and astrocytes on 3-dimensional aragonite biomatrices.
    Peretz H; Talpalar AE; Vago R; Baranes D
    Tissue Eng; 2007 Mar; 13(3):461-72. PubMed ID: 17319796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A photolithographic method to create cellular micropatterns.
    Karp JM; Yeo Y; Geng W; Cannizarro C; Yan K; Kohane DS; Vunjak-Novakovic G; Langer RS; Radisic M
    Biomaterials; 2006 Sep; 27(27):4755-64. PubMed ID: 16730059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks.
    Limongi T; Cesca F; Gentile F; Marotta R; Ruffilli R; Barberis A; Dal Maschio M; Petrini EM; Santoriello S; Benfenati F; Di Fabrizio E
    Small; 2013 Feb; 9(3):402-12. PubMed ID: 23027505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Micropatterns of Matrigel for three-dimensional epithelial cultures.
    Sodunke TR; Turner KK; Caldwell SA; McBride KW; Reginato MJ; Noh HM
    Biomaterials; 2007 Sep; 28(27):4006-16. PubMed ID: 17574663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro biocompatibility of chitosan-based materials to primary culture of hippocampal neurons.
    He Q; Zhang T; Yang Y; Ding F
    J Mater Sci Mater Med; 2009 Jul; 20(7):1457-66. PubMed ID: 19301107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alteration of human neuroblastoma cell morphology and neurite extension with micropatterns.
    Yang IH; Co CC; Ho CC
    Biomaterials; 2005 Nov; 26(33):6599-609. PubMed ID: 15936072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laser fabricated discontinuous anisotropic microconical substrates as a new model scaffold to control the directionality of neuronal network outgrowth.
    Simitzi C; Efstathopoulos P; Kourgiantaki A; Ranella A; Charalampopoulos I; Fotakis C; Athanassakis I; Stratakis E; Gravanis A
    Biomaterials; 2015 Oct; 67():115-28. PubMed ID: 26210178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic patterning for fabrication of contractile cardiac organoids.
    Khademhosseini A; Eng G; Yeh J; Kucharczyk PA; Langer R; Vunjak-Novakovic G; Radisic M
    Biomed Microdevices; 2007 Apr; 9(2):149-57. PubMed ID: 17146728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.