BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22068264)

  • 1. Aza-boron-dipyrromethene dyes: TD-DFT benchmarks, spectral analysis and design of original near-IR structures.
    Le Guennic B; Maury O; Jacquemin D
    Phys Chem Chem Phys; 2012 Jan; 14(1):157-64. PubMed ID: 22068264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Computation of Adiabatic Energies in Aza-Boron-Dipyrromethene Dyes.
    Chibani S; Le Guennic B; Charaf-Eddin A; Maury O; Andraud C; Jacquemin D
    J Chem Theory Comput; 2012 Sep; 8(9):3303-13. PubMed ID: 26605737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the Accuracy of Excited-State Simulations of BODIPY and Aza-BODIPY Dyes with a Joint SOS-CIS(D) and TD-DFT Approach.
    Chibani S; Laurent AD; Le Guennic B; Jacquemin D
    J Chem Theory Comput; 2014 Oct; 10(10):4574-82. PubMed ID: 26588151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation spectra of nitro-diphenylaniline: accurate time-dependent density functional theory predictions for charge-transfer dyes.
    Jacquemin D; Bouhy M; Perpète EA
    J Chem Phys; 2006 May; 124(20):204321. PubMed ID: 16774346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the absorption spectra of recently synthesized carbonyl dyes: TD-DFT insights.
    Jacquemin D; Peltier C; Ciofini I
    J Phys Chem A; 2010 Sep; 114(35):9579-82. PubMed ID: 20704297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond Spectroscopy and Nonlinear Optical Properties of aza-BODIPY Derivatives in Solution.
    Chang HJ; Bondar MV; Munera N; David S; Maury O; Berginc G; Le Guennic B; Jacquemin D; Andraud C; Hagan DJ; Van Stryland EW
    Chemistry; 2022 Mar; 28(17):e202104072. PubMed ID: 35157336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of near-infrared absorbing benzannulated aza-BODIPY dyes.
    Gresser R; Hummert M; Hartmann H; Leo K; Riede M
    Chemistry; 2011 Mar; 17(10):2939-47. PubMed ID: 21290438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioindigo dyes: highly accurate visible spectra with TD-DFT.
    Jacquemin D; Preat J; Wathelet V; Fontaine M; Perpète EA
    J Am Chem Soc; 2006 Feb; 128(6):2072-83. PubMed ID: 16464110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformationally restricted aza-BODIPY: highly fluorescent, stable near-infrared absorbing dyes.
    Zhao W; Carreira EM
    Chemistry; 2006 Sep; 12(27):7254-63. PubMed ID: 16850516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments.
    Jacquemin D; Mennucci B; Adamo C
    Phys Chem Chem Phys; 2011 Oct; 13(38):16987-98. PubMed ID: 21881657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited states of ladder-type π-conjugated dyes with a joint SOS-CIS(D) and PCM-TD-DFT approach.
    Chibani S; Laurent AD; Le Guennic B; Jacquemin D
    J Phys Chem A; 2015 May; 119(21):5417-25. PubMed ID: 25522826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarks for electronically excited states: time-dependent density functional theory and density functional theory based multireference configuration interaction.
    Silva-Junior MR; Schreiber M; Sauer SP; Thiel W
    J Chem Phys; 2008 Sep; 129(10):104103. PubMed ID: 19044904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic energy transfer to the S2 level of the acceptor in functionalised boron dipyrromethene dyes.
    Harriman A; Mallon LJ; Goeb S; Ulrich G; Ziessel R
    Chemistry; 2009; 15(18):4553-64. PubMed ID: 19291726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells.
    Le Bahers T; Pauporté T; Scalmani G; Adamo C; Ciofini I
    Phys Chem Chem Phys; 2009 Dec; 11(47):11276-84. PubMed ID: 20024396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and spectroscopic properties of fused-ring-expanded aza-boradiazaindacenes.
    Lu H; Shimizu S; Mack J; Shen Z; Kobayashi N
    Chem Asian J; 2011 Apr; 6(4):1026-37. PubMed ID: 21381211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a Theoretical Quantitative Estimation of the λmax of Anthraquinones-Based Dyes.
    Perpète EA; Wathelet V; Preat J; Lambert C; Jacquemin D
    J Chem Theory Comput; 2006 Mar; 2(2):434-40. PubMed ID: 26626530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformationally restricted dipyrromethene boron difluoride (BODIPY) dyes: highly fluorescent, multicolored probes for cellular imaging.
    Zheng Q; Xu G; Prasad PN
    Chemistry; 2008; 14(19):5812-9. PubMed ID: 18494008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and CIS, TD-DFT, ab initio calculations of visible spectra and the vibrational frequencies of sulfonyl azide-azoic dyes.
    Teimouri A; Chermahini AN; Taban K; Dabbagh HA
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Mar; 72(2):369-77. PubMed ID: 19042151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Vertical Excitation Energies of BODIPY/Aza-BODIPY Derivatives from Excited-State Mean-Field Calculations.
    Toffoli D; Quarin M; Fronzoni G; Stener M
    J Phys Chem A; 2022 Oct; 126(40):7137-7146. PubMed ID: 36173265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes.
    Fayet G; Jacquemin D; Wathelet V; Perpète EA; Rotureau P; Adamo C
    J Mol Graph Model; 2010 Feb; 28(6):465-71. PubMed ID: 20036173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.