These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22068269)

  • 1. The combination of microfracture and a cell-free polymer-based implant immersed with autologous serum for cartilage defect coverage.
    Dhollander AA; Verdonk PC; Lambrecht S; Almqvist KF; Elewaut D; Verbruggen G; Verdonk R
    Knee Surg Sports Traumatol Arthrosc; 2012 Sep; 20(9):1773-80. PubMed ID: 22068269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repair of retropatellar cartilage defects in the knee with microfracture and a cell-free polymer-based implant.
    Becher C; Ettinger M; Ezechieli M; Kaps C; Ewig M; Smith T
    Arch Orthop Trauma Surg; 2015 Jul; 135(7):1003-10. PubMed ID: 25953630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA phase-II prospective, randomized clinical trial after two years.
    Crawford DC; DeBerardino TM; Williams RJ
    J Bone Joint Surg Am; 2012 Jun; 94(11):979-89. PubMed ID: 22637204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Two-Year Results of Modified AMIC Technique for Treatment of Cartilage Defects of the Knee].
    OtaŠeviČ T; ValiŠ P; Rouchal M; NovÁk J; Repko M; ŠprlÁkovÁ-PukovÁ A
    Acta Chir Orthop Traumatol Cech; 2020; 87(3):167-174. PubMed ID: 32773017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adipose-Derived Mesenchymal Stem Cells With Microfracture Versus Microfracture Alone: 2-Year Follow-up of a Prospective Randomized Trial.
    Koh YG; Kwon OR; Kim YS; Choi YJ; Tak DH
    Arthroscopy; 2016 Jan; 32(1):97-109. PubMed ID: 26585585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix-Applied Characterized Autologous Cultured Chondrocytes Versus Microfracture: Five-Year Follow-up of a Prospective Randomized Trial.
    Brittberg M; Recker D; Ilgenfritz J; Saris DBF;
    Am J Sports Med; 2018 May; 46(6):1343-1351. PubMed ID: 29565642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel autologous-made matrix using hyaline cartilage chips and platelet-rich growth factors for the treatment of full-thickness cartilage or osteochondral defects: Preliminary results.
    Cugat R; Alentorn-Geli E; Navarro J; Cuscó X; Steinbacher G; Seijas R; Álvarez-Díaz P; Barastegui D; Laiz P; Samitier G; García-Balletbó M
    J Orthop Surg (Hong Kong); 2020; 28(1):2309499019887547. PubMed ID: 31835970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects.
    Marlovits S; Aldrian S; Wondrasch B; Zak L; Albrecht C; Welsch G; Trattnig S
    Am J Sports Med; 2012 Oct; 40(10):2273-80. PubMed ID: 22922521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfracture technique versus carbon fibre rod implantation for treatment of knee articular cartilage lesions.
    Dasar U; Gursoy S; Akkaya M; Algin O; Isik C; Bozkurt M
    J Orthop Surg (Hong Kong); 2016 Aug; 24(2):188-93. PubMed ID: 27574261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arthroscopic gel-type autologous chondrocyte implantation presents histologic evidence of regenerating hyaline-like cartilage in the knee with articular cartilage defect.
    Yoon TH; Jung M; Choi CH; Kim HS; Lee YH; Choi YS; Kim SJ; Kim SH
    Knee Surg Sports Traumatol Arthrosc; 2020 Mar; 28(3):941-951. PubMed ID: 31240378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arthroscopic Matrix-Assisted Autologous Chondrocyte Transplantation Versus Microfracture: A 6-Year Follow-up of a Prospective Randomized Trial.
    Ibarra C; Villalobos E; Madrazo-Ibarra A; Velasquillo C; Martinez-Lopez V; Izaguirre A; Olivos-Meza A; Cortes-Gonzalez S; Perez-Jimenez FJ; Vargas-Ramirez A; Franco-Sanchez G; Ibarra-Ibarra LG; Sierra-Suarez L; Almazan A; Ortega-Sanchez C; Trueba C; Martin FB; Arredondo-Valdes R; Chavez-Arias D
    Am J Sports Med; 2021 Jul; 49(8):2165-2176. PubMed ID: 34048286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical and Radiological Regeneration of Large and Deep Osteochondral Defects of the Knee by Bone Augmentation Combined With Matrix-Guided Autologous Chondrocyte Transplantation.
    Zellner J; Grechenig S; Pfeifer CG; Krutsch W; Koch M; Welsch G; Scherl M; Seitz J; Zeman F; Nerlich M; Angele P
    Am J Sports Med; 2017 Nov; 45(13):3069-3080. PubMed ID: 28777662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical and radiological long-term outcomes after matrix-induced autologous chondrocyte transplantation: a prospective follow-up at a minimum of 10 years.
    Aldrian S; Zak L; Wondrasch B; Albrecht C; Stelzeneder B; Binder H; Kovar F; Trattnig S; Marlovits S
    Am J Sports Med; 2014 Nov; 42(11):2680-8. PubMed ID: 25204296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee: a retrospective comparative study.
    Krych AJ; Harnly HW; Rodeo SA; Williams RJ
    J Bone Joint Surg Am; 2012 Jun; 94(11):971-8. PubMed ID: 22637203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term outcomes after first-generation autologous chondrocyte implantation for cartilage defects of the knee.
    Niemeyer P; Porichis S; Steinwachs M; Erggelet C; Kreuz PC; Schmal H; Uhl M; Ghanem N; Südkamp NP; Salzmann G
    Am J Sports Med; 2014 Jan; 42(1):150-7. PubMed ID: 24145948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-stage cartilage repair in the knee with microfracture covered with a resorbable polymer-based matrix and autologous bone marrow concentrate.
    Enea D; Cecconi S; Calcagno S; Busilacchi A; Manzotti S; Kaps C; Gigante A
    Knee; 2013 Dec; 20(6):562-9. PubMed ID: 23642661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical and radiographical ten years long-term outcome of microfracture vs. autologous chondrocyte implantation: a matched-pair analysis.
    Ossendorff R; Franke K; Erdle B; Uhl M; Südkamp NP; Salzmann GM
    Int Orthop; 2019 Mar; 43(3):553-559. PubMed ID: 29909583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repair of focal cartilage defects with scaffold-assisted autologous chondrocyte grafts: clinical and biomechanical results 48 months after transplantation.
    Kreuz PC; Müller S; Freymann U; Erggelet C; Niemeyer P; Kaps C; Hirschmüller A
    Am J Sports Med; 2011 Aug; 39(8):1697-705. PubMed ID: 21540360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrix-Applied Characterized Autologous Cultured Chondrocytes Versus Microfracture: Two-Year Follow-up of a Prospective Randomized Trial.
    Saris D; Price A; Widuchowski W; Bertrand-Marchand M; Caron J; Drogset JO; Emans P; Podskubka A; Tsuchida A; Kili S; Levine D; Brittberg M;
    Am J Sports Med; 2014 Jun; 42(6):1384-94. PubMed ID: 24714783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation Between Clinical and Radiological Outcomes After Matrix-Induced Autologous Chondrocyte Implantation in the Femoral Condyles.
    Ebert JR; Smith A; Fallon M; Wood DJ; Ackland TR
    Am J Sports Med; 2014 Aug; 42(8):1857-64. PubMed ID: 24890782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.