These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22068318)

  • 1. Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base.
    Lyons ME; Doyle RL; Brandon MP
    Phys Chem Chem Phys; 2011 Dec; 13(48):21530-51. PubMed ID: 22068318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox switching and oxygen evolution electrocatalysis in polymeric iron oxyhydroxide films.
    Lyons ME; Brandon MP
    Phys Chem Chem Phys; 2009 Apr; 11(13):2203-17. PubMed ID: 19305893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base.
    Doyle RL; Lyons ME
    Phys Chem Chem Phys; 2013 Apr; 15(14):5224-37. PubMed ID: 23348122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity.
    Salimi A; Hallaj R; Soltanian S
    Biophys Chem; 2007 Nov; 130(3):122-31. PubMed ID: 17825977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theorization on ion-exchange equilibria: activity of species in 2-D phases.
    Tamura H
    J Colloid Interface Sci; 2004 Nov; 279(1):1-22. PubMed ID: 15380407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles.
    Salimi A; Hallaj R; Soltanian S; Mamkhezri H
    Anal Chim Acta; 2007 Jun; 594(1):24-31. PubMed ID: 17560381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.
    Louie MW; Bell AT
    J Am Chem Soc; 2013 Aug; 135(33):12329-37. PubMed ID: 23859025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide.
    Salimi A; Sharifi E; Noorbakhsh A; Soltanian S
    Biophys Chem; 2007 Feb; 125(2-3):540-8. PubMed ID: 17166647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts.
    Wachs IE; Jehng JM; Ueda W
    J Phys Chem B; 2005 Feb; 109(6):2275-84. PubMed ID: 16851220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pot synthesis of metal-carbon nanotubes network hybrids as highly efficient catalysts for oxygen evolution reaction of water splitting.
    Cheng Y; Liu C; Cheng HM; Jiang SP
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10089-98. PubMed ID: 24927372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies.
    Cummings CY; Marken F; Peter LM; Wijayantha KG; Tahir AA
    J Am Chem Soc; 2012 Jan; 134(2):1228-34. PubMed ID: 22191733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of electrocatalytic reduction of nitric oxide on Pt(100).
    Rosca V; Koper MT
    J Phys Chem B; 2005 Sep; 109(35):16750-9. PubMed ID: 16853133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen.
    Yeo BS; Bell AT
    J Am Chem Soc; 2011 Apr; 133(14):5587-93. PubMed ID: 21413705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes.
    Doyle RL; Godwin IJ; Brandon MP; Lyons ME
    Phys Chem Chem Phys; 2013 Sep; 15(33):13737-83. PubMed ID: 23652494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A functionally stable manganese oxide oxygen evolution catalyst in acid.
    Huynh M; Bediako DK; Nocera DG
    J Am Chem Soc; 2014 Apr; 136(16):6002-10. PubMed ID: 24669981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of electro-oxidation of carbon monoxide on stepped platinum electrodes in alkaline media: a chronoamperometric and kinetic modeling study.
    García G; Koper MT
    Phys Chem Chem Phys; 2009 Dec; 11(48):11437-46. PubMed ID: 20024414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anodic deposition of colloidal iridium oxide thin films from hexahydroxyiridate(IV) solutions.
    Zhao Y; Vargas-Barbosa NM; Hernandez-Pagan EA; Mallouk TE
    Small; 2011 Jul; 7(14):2087-93. PubMed ID: 21678551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of oxygen reactions at porous oxide electrodes. Part 2--Oxygen evolution at RuO2, IrO2 and Ir(x)Ru(1-x)O2 electrodes in aqueous acid and alkaline solution.
    Lyons ME; Floquet S
    Phys Chem Chem Phys; 2011 Mar; 13(12):5314-35. PubMed ID: 21344102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.