These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2206849)

  • 1. Renal distribution and metabolism of [2H9]choline. A 2H NMR and MRI study.
    Eng J; Berkowitz BA; Balaban RS
    NMR Biomed; 1990 Aug; 3(4):173-7. PubMed ID: 2206849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of de novo synthesized betaine in rat kidney: role of renal synthesis on medullary betaine accumulation.
    Moeckel GW; Lien YH
    Am J Physiol; 1997 Jan; 272(1 Pt 2):F94-9. PubMed ID: 9039054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute regulation of the predominant organic solutes of the rabbit renal inner medulla.
    Wolff SD; Stanton TS; James SL; Balaban RS
    Am J Physiol; 1989 Oct; 257(4 Pt 2):F676-81. PubMed ID: 2508489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution magic angle spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla.
    Garrod S; Humpfer E; Spraul M; Connor SC; Polley S; Connelly J; Lindon JC; Nicholson JK; Holmes E
    Magn Reson Med; 1999 Jun; 41(6):1108-18. PubMed ID: 10371442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual energy CT monitoring of the renal corticomedullary sodium gradient in swine.
    Kumar R; Wang ZJ; Forsythe C; Fu Y; Chen YY; Yeh BM
    Eur J Radiol; 2012 Mar; 81(3):423-9. PubMed ID: 21237601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoration of urine concentrating ability and accumulation of medullary osmolytes after chronic diuresis.
    Sone M; Ohno A; Albrecht GJ; Thurau K; Beck FX
    Am J Physiol; 1995 Oct; 269(4 Pt 2):F480-90. PubMed ID: 7485532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI.
    Baumann D; Rudin M
    Magn Reson Imaging; 2000 Jun; 18(5):587-95. PubMed ID: 10913720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal inner medullary choline dehydrogenase activity: characterization and modulation.
    Grossman EB; Hebert SC
    Am J Physiol; 1989 Jan; 256(1 Pt 2):F107-12. PubMed ID: 2643346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR studies of renal phosphate metabolites in vivo: effects of hydration and dehydration.
    Wolff SD; Eng C; Balaban RS
    Am J Physiol; 1988 Oct; 255(4 Pt 2):F581-9. PubMed ID: 3177650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylamines and polyols in kidney, urinary bladder, urine, liver, brain, and plasma. An analysis using 1H nuclear magnetic resonance spectroscopy.
    Gullans SR; Heilig CW; Stromski ME; Blumenfeld JD
    Ren Physiol Biochem; 1989; 12(3):191-201. PubMed ID: 2623345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen-14 nuclear magnetic resonance spectroscopy of mammalian tissues.
    Balaban RS; Knepper MA
    Am J Physiol; 1983 Nov; 245(5 Pt 1):C439-44. PubMed ID: 6638169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two methods for assessment of choline status in a randomized crossover study with varying dietary choline intake in people: isotope dilution MS of plasma and in vivo single-voxel magnetic resonance spectroscopy of liver.
    Horita DA; Hwang S; Stegall JM; Friday WB; Kirchner DR; Zeisel SH
    Am J Clin Nutr; 2021 Jun; 113(6):1670-1678. PubMed ID: 33668062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water content and NMR relaxation time gradients in the rabbit kidney.
    Kundel HL; Schlakman B; Joseph PM; Fishman JE; Summers R
    Invest Radiol; 1986 Jan; 21(1):12-7. PubMed ID: 3943954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of the direct metabolic effects of mercury II chloride on the kidney of Sprague-Dawley rats using high-resolution magic angle spinning 1H NMR spectroscopy of intact tissue and pattern recognition.
    Wang Y; Bollard ME; Nicholson JK; Holmes E
    J Pharm Biomed Anal; 2006 Feb; 40(2):375-81. PubMed ID: 16146678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristic time courses of cortical and medullary sodium signals measured by noninvasive (23) Na-MRI in rat kidney induced by furosemide.
    Liu H; Zhou D; Garcia ML; Kohler MG; Shen X; Williams DS; Klimas MT; Hargreaves RJ; Kaczorowski GJ
    J Magn Reson Imaging; 2015 Jun; 41(6):1622-8. PubMed ID: 25168165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Choline metabolism in breast cancer; 2H-, 13C- and 31P-NMR studies of cells and tumors.
    Katz-Brull R; Margalit R; Bendel P; Degani H
    MAGMA; 1998 Aug; 6(1):44-52. PubMed ID: 9794289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choline transport and its osmotic regulation in renal cells derived from the rabbit outer medullary thick ascending limb of Henle.
    Grunewald RW; Oppermann M; Müller GA
    Pflugers Arch; 1997 Nov; 434(6):815-21. PubMed ID: 9306017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal medullary electrolytes: effects of furosemide assessed by studies in vivo of electrical admittance.
    Portalska E; Sadowski J
    Arch Int Physiol Biochim; 1984 Dec; 92(5):345-54. PubMed ID: 6085550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dimethylaminoethanol, an inhibitor of betaine production, on the disposition of choline in the rat kidney.
    Lohr J; Acara M
    J Pharmacol Exp Ther; 1990 Jan; 252(1):154-8. PubMed ID: 2405150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmotic adaptation of renal medullary cells during transition from chronic diuresis to antidiuresis.
    Sone M; Albrecht GJ; Dörge A; Thurau K; Beck FX
    Am J Physiol; 1993 Apr; 264(4 Pt 2):F722-9. PubMed ID: 8097380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.