These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 22068491)
1. Production of cephalosporin C using crude glycerol in fed-batch culture of Acremonium chrysogenum M35. Shin HY; Lee JY; Choi HS; Lee JH; Kim SW J Microbiol; 2011 Oct; 49(5):753-8. PubMed ID: 22068491 [TBL] [Abstract][Full Text] [Related]
2. Utilization of glycerol as cysteine and carbon sources for cephalosporin C production by Acremonium chrysogenum M35 in methionine-unsupplemented culture. Shin HY; Lee JY; Park C; Kim SW J Biotechnol; 2011 Feb; 151(4):363-8. PubMed ID: 21219942 [TBL] [Abstract][Full Text] [Related]
3. Utilization of algal sugars and glycerol for enhanced cephalosporin C production by Acremonium chrysogenum M35. Lee JH; Yoo HY; Yang X; Kim DS; Lee JH; Lee SK; Han SO; Kim SW Lett Appl Microbiol; 2017 Jan; 64(1):66-72. PubMed ID: 27736007 [TBL] [Abstract][Full Text] [Related]
4. Stimulation of cephalosporin C production in Acremonium chrysogenum M35 by glycerol. Shin HY; Lee JY; Jung YR; Kim SW Bioresour Technol; 2010 Jun; 101(12):4549-53. PubMed ID: 20171092 [TBL] [Abstract][Full Text] [Related]
5. Defining an optimal carbon source/methionine feed strategy for growth and cephalosporin C formation by Cephalosporium acremonium. Vicik SM; Fedor AJ; Swartz RW Biotechnol Prog; 1990; 6(5):333-40. PubMed ID: 1366872 [TBL] [Abstract][Full Text] [Related]
6. Sulphate and methionine as sulphur sources for cysteine and cephalosporin C synthesis in Cephalosporium acremonium. Lewandowska M; Paszewski A Acta Microbiol Pol; 1988; 37(1):17-26. PubMed ID: 2462331 [TBL] [Abstract][Full Text] [Related]
7. Investigations of the production of cephalosporin C by Acremonium chrysogenum. Tollnick C; Seidel G; Beyer M; Schügerl K Adv Biochem Eng Biotechnol; 2004; 86():1-45. PubMed ID: 15088762 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the relationship between growth, cephalosporin C production, and fragmentation in Acremonium chrysogenum. Sándor E; Szentirmai A; Paul GC; Thomas CR; Pócsi I; Karaffa L Can J Microbiol; 2001 Sep; 47(9):801-6. PubMed ID: 11683461 [TBL] [Abstract][Full Text] [Related]
9. Unraveling the methionine-cephalosporin puzzle in Acremonium chrysogenum. Martín JF; Demain AL Trends Biotechnol; 2002 Dec; 20(12):502-7. PubMed ID: 12443871 [TBL] [Abstract][Full Text] [Related]
10. Cybernetic modeling of the cephalosporin C fermentation process by Cephalosporium acremonium. Kim BM; Kim SW; Yang DR Biotechnol Lett; 2003 Apr; 25(8):611-6. PubMed ID: 12882154 [TBL] [Abstract][Full Text] [Related]
11. Glutathione metabolism of Acremonium chrysogenum in relation to cephalosporin C production: is gamma-glutamyltransferase in the center? Nagy MA; Emri T; Fekete E; Sándor E; Springael JY; Penninckx MJ; Pócsi I Folia Microbiol (Praha); 2003; 48(2):149-55. PubMed ID: 12800495 [TBL] [Abstract][Full Text] [Related]
12. Targeted inactivation of the mecB gene, encoding cystathionine-gamma-lyase, shows that the reverse transsulfuration pathway is required for high-level cephalosporin biosynthesis in Acremonium chrysogenum C10 but not for methionine induction of the cephalosporin genes. Liu G; Casqueiro J; Bañuelos O; Cardoza RE; Gutiérrez S; Martín JF J Bacteriol; 2001 Mar; 183(5):1765-72. PubMed ID: 11160109 [TBL] [Abstract][Full Text] [Related]
13. Acremonium chrysogenum differentiation and biosynthesis of cephalosporin. Bartoshevich YuE ; Zaslavskaya PL; Novak MJ; Yudina OD J Basic Microbiol; 1990; 30(5):313-20. PubMed ID: 2213533 [TBL] [Abstract][Full Text] [Related]
14. Enhancing the production of cephalosporin C through modulating the autophagic process of Acremonium chrysogenum. Li H; Hu P; Wang Y; Pan Y; Liu G Microb Cell Fact; 2018 Nov; 17(1):175. PubMed ID: 30424777 [TBL] [Abstract][Full Text] [Related]
15. [Correlation of cephalosporin C synthesis and proteolytic enzymes in a differentiating culture of Acremonium chrysogenum (Cephalosporum acremonium) mutants]. Bartoshevich IuE; Iudina OD; Shuvalova IA; Novak MI; Dmitrieva SV Antibiotiki; 1983 Jan; 28(1):3-10. PubMed ID: 6338814 [TBL] [Abstract][Full Text] [Related]
16. A moderate amplification of the mecB gene encoding cystathionine-gamma-lyase stimulates cephalosporin biosynthesis in Acremonium chrysogenum. Kosalková K; Marcos AT; Martín JF J Ind Microbiol Biotechnol; 2001 Oct; 27(4):252-8. PubMed ID: 11687939 [TBL] [Abstract][Full Text] [Related]
17. The thioredoxin reductase-encoding gene ActrxR1 is involved in the cephalosporin C production of Acremonium chrysogenum in methionine-supplemented medium. Liu L; Long LK; An Y; Yang J; Xu X; Hu CH; Liu G Appl Microbiol Biotechnol; 2013 Mar; 97(6):2551-62. PubMed ID: 22926582 [TBL] [Abstract][Full Text] [Related]
18. [Pathways of the synthesis of glutamic acid by cephalosporin C-producing Acremonium chrysogenum]. Krakhmaleva IN; Telesnina GN; Petiushenko RM Antibiot Khimioter; 1988 May; 33(5):327-30. PubMed ID: 2901250 [TBL] [Abstract][Full Text] [Related]
19. Influence of medium composition on the cephalosporin C production with a highly productive strain Cephalosporium acremonium. Zhou W; Holzhauer-Rieger K; Dors M; Schügerl K J Biotechnol; 1992 May; 23(3):315-29. PubMed ID: 1368249 [TBL] [Abstract][Full Text] [Related]
20. [Effect of carbohydrate catabolic repression on the accumulation and intracellular distribution of methionine in Acremonium chrysogenum--the producer of cephalosporin C]. Bartoshevich IuE; Novak MI; Iudina OD; Sazykin IuO; Beliaevskaia IV Antibiot Med Biotekhnol; 1985 Jun; 30(6):410-4. PubMed ID: 4062267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]