These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 22068502)
1. Functional analysis of SGR4635-induced enhancement of pigmented antibiotic production in Streptomyces lividans. Chi WJ; Lee SY; Lee J J Microbiol; 2011 Oct; 49(5):828-33. PubMed ID: 22068502 [TBL] [Abstract][Full Text] [Related]
2. Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Jin XM; Chang YK; Lee JH; Hong SK J Microbiol Biotechnol; 2017 Oct; 27(10):1867-1876. PubMed ID: 28838222 [TBL] [Abstract][Full Text] [Related]
3. A DNA-binding factor, ArfA, interacts with the bldH promoter and affects undecylprodigiosin production in Streptomyces lividans. Xu D; Kim TJ; Park ZY; Lee SK; Yang SH; Kwon HJ; Suh JW Biochem Biophys Res Commun; 2009 Feb; 379(2):319-23. PubMed ID: 19103157 [TBL] [Abstract][Full Text] [Related]
5. In Search of the E. coli Compounds that Change the Antibiotic Production Pattern of Streptomyces coelicolor During Inter-species Interaction. Mavituna F; Luti KJ; Gu L Enzyme Microb Technol; 2016 Aug; 90():45-52. PubMed ID: 27241291 [TBL] [Abstract][Full Text] [Related]
6. Differential production of two antibiotics of Streptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Sevcikova B; Kormanec J Arch Microbiol; 2004 May; 181(5):384-9. PubMed ID: 15054568 [TBL] [Abstract][Full Text] [Related]
7. Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production. Rioseras B; López-García MT; Yagüe P; Sánchez J; Manteca A Bioresour Technol; 2014 Jan; 151():191-8. PubMed ID: 24240146 [TBL] [Abstract][Full Text] [Related]
8. The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Nothaft H; Rigali S; Boomsma B; Swiatek M; McDowall KJ; van Wezel GP; Titgemeyer F Mol Microbiol; 2010 Mar; 75(5):1133-44. PubMed ID: 20487300 [TBL] [Abstract][Full Text] [Related]
9. Characterization of Sgr3394 produced only by the A-factor-producin Streptomyces griseus IFO 13350, not by the A-factor deficient mutant. Chi WJ; Jin XM; Jung SC; Oh EA; Hong SK J Microbiol; 2011 Feb; 49(1):155-60. PubMed ID: 21369994 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Uguru GC; Stephens KE; Stead JA; Towle JE; Baumberg S; McDowall KJ Mol Microbiol; 2005 Oct; 58(1):131-50. PubMed ID: 16164554 [TBL] [Abstract][Full Text] [Related]
11. Heterologous production of daptomycin in Streptomyces lividans. Penn J; Li X; Whiting A; Latif M; Gibson T; Silva CJ; Brian P; Davies J; Miao V; Wrigley SK; Baltz RH J Ind Microbiol Biotechnol; 2006 Feb; 33(2):121-8. PubMed ID: 16261359 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of Shinorhizobium meliloti hemoprotein in Streptomyces lividans to enhance secondary metabolite production. Kim YJ; Sa SO; Chang YK; Hong SK; Hong YS J Microbiol Biotechnol; 2007 Dec; 17(12):2066-70. PubMed ID: 18167457 [TBL] [Abstract][Full Text] [Related]
13. Expression of the Streptomyces coelicolor A3(2) ptpA gene encoding a phosphotyrosine protein phosphatase leads to overproduction of secondary metabolites in S. lividans. Umeyama T; Tanabe Y; Aigle BD; Horinouchi S FEMS Microbiol Lett; 1996 Nov; 144(2-3):177-84. PubMed ID: 8900062 [TBL] [Abstract][Full Text] [Related]
14. Involvement of amfC in physiological and morphological development in Streptomyces coelicolor A3(2). Yonekawa T; Ohnishi Y; Horinouchi S Microbiology (Reading); 1999 Sep; 145 ( Pt 9)():2273-2280. PubMed ID: 10517580 [TBL] [Abstract][Full Text] [Related]
15. Functional connexion of bacterioferritin in antibiotic production and morphological differentiation in Streptomyces coelicolor. García-Martín J; García-Abad L; Santamaría RI; Díaz M Microb Cell Fact; 2024 Aug; 23(1):234. PubMed ID: 39182107 [TBL] [Abstract][Full Text] [Related]
16. Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Manteca A; Alvarez R; Salazar N; Yagüe P; Sanchez J Appl Environ Microbiol; 2008 Jun; 74(12):3877-86. PubMed ID: 18441105 [TBL] [Abstract][Full Text] [Related]
17. abaA, a new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. Fernández-Moreno MA; Martín-Triana AJ; Martínez E; Niemi J; Kieser HM; Hopwood DA; Malpartida F J Bacteriol; 1992 May; 174(9):2958-67. PubMed ID: 1569025 [TBL] [Abstract][Full Text] [Related]
18. Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization. Lewis RA; Laing E; Allenby N; Bucca G; Brenner V; Harrison M; Kierzek AM; Smith CP BMC Genomics; 2010 Dec; 11():682. PubMed ID: 21122120 [TBL] [Abstract][Full Text] [Related]
19. Repression of antibiotic production and sporulation in Streptomyces coelicolor by overexpression of a TetR family transcriptional regulator. Xu D; Seghezzi N; Esnault C; Virolle MJ Appl Environ Microbiol; 2010 Dec; 76(23):7741-53. PubMed ID: 20935121 [TBL] [Abstract][Full Text] [Related]
20. Nucleotide sequence of afsB, a pleiotropic gene involved in secondary metabolism in Streptomyces coelicolor A3(2) and "Streptomyces lividans". Horinouchi S; Suzuki H; Beppu T J Bacteriol; 1986 Oct; 168(1):257-69. PubMed ID: 2428809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]