These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 22068540)

  • 1. How to apply de Bruijn graphs to genome assembly.
    Compeau PE; Pevzner PA; Tesler G
    Nat Biotechnol; 2011 Nov; 29(11):987-91. PubMed ID: 22068540
    [No Abstract]   [Full Text] [Related]  

  • 2. De novo repeat classification and fragment assembly.
    Pevzner PA; Tang H; Tesler G
    Genome Res; 2004 Sep; 14(9):1786-96. PubMed ID: 15342561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paired de bruijn graphs: a novel approach for incorporating mate pair information into genome assemblers.
    Medvedev P; Pham S; Chaisson M; Tesler G; Pevzner P
    J Comput Biol; 2011 Nov; 18(11):1625-34. PubMed ID: 21999285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathset graphs: a novel approach for comprehensive utilization of paired reads in genome assembly.
    Pham SK; Antipov D; Sirotkin A; Tesler G; Pevzner PA; Alekseyev MA
    J Comput Biol; 2013 Apr; 20(4):359-71. PubMed ID: 22803627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safe and Complete Contig Assembly Through Omnitigs.
    Tomescu AI; Medvedev P
    J Comput Biol; 2017 Jun; 24(6):590-602. PubMed ID: 27749096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Genome Assembly through Parallel de Bruijn Graph Construction for Multiple k-mers.
    Mahadik K; Wright C; Kulkarni M; Bagchi S; Chaterji S
    Sci Rep; 2019 Oct; 9(1):14882. PubMed ID: 31619717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequencing of difficult templates containing poly(A/T) tracts: closure of sequence gaps.
    Langan JE; Rowbottom L; Liloglou T; Field JK; Risk JM
    Biotechniques; 2002 Aug; 33(2):276, 278, 280. PubMed ID: 12188175
    [No Abstract]   [Full Text] [Related]  

  • 8. A scaffold analysis tool using mate-pair information in genome sequencing.
    Kim PG; Cho HG; Park K
    J Biomed Biotechnol; 2008; 2008():675741. PubMed ID: 18414585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The complex task of choosing a de novo assembly: lessons from fungal genomes.
    Gallo JE; Muñoz JF; Misas E; McEwen JG; Clay OK
    Comput Biol Chem; 2014 Dec; 53 Pt A():97-107. PubMed ID: 25262360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facilitated sequence assembly using densely labeled optical DNA barcodes: A combinatorial auction approach.
    Dvirnas A; Pichler C; Stewart CL; Quaderi S; Nyberg LK; Müller V; Kumar Bikkarolla S; Kristiansson E; Sandegren L; Westerlund F; Ambjörnsson T
    PLoS One; 2018; 13(3):e0193900. PubMed ID: 29522539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and accurate de novo genome assembly from long uncorrected reads.
    Vaser R; Sović I; Nagarajan N; Šikić M
    Genome Res; 2017 May; 27(5):737-746. PubMed ID: 28100585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Eulerian path approach to DNA fragment assembly.
    Pevzner PA; Tang H; Waterman MS
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9748-53. PubMed ID: 11504945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of the working draft of the human genome with GigAssembler.
    Kent WJ; Haussler D
    Genome Res; 2001 Sep; 11(9):1541-8. PubMed ID: 11544197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational techniques for human genome resequencing using mated gapped reads.
    Carnevali P; Baccash J; Halpern AL; Nazarenko I; Nilsen GB; Pant KP; Ebert JC; Brownley A; Morenzoni M; Karpinchyk V; Martin B; Ballinger DG; Drmanac R
    J Comput Biol; 2012 Mar; 19(3):279-92. PubMed ID: 22175250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combination of direct and paired link graphs can boost repetitive genome assembly.
    Shi W; Ji P; Zhao F
    Nucleic Acids Res; 2017 Apr; 45(6):e43. PubMed ID: 27924003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMASS: a structured pattern matching approach to shotgun sequence assembly.
    Kim S; Segre AM
    J Comput Biol; 1999; 6(2):163-86. PubMed ID: 10421521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct comparison of performance of single nucleotide variant calling in human genome with alignment-based and assembly-based approaches.
    Wu L; Yavas G; Hong H; Tong W; Xiao W
    Sci Rep; 2017 Sep; 7(1):10963. PubMed ID: 28887485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly reconciliation.
    Zimin AV; Smith DR; Sutton G; Yorke JA
    Bioinformatics; 2008 Jan; 24(1):42-5. PubMed ID: 18057021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CGAL: computing genome assembly likelihoods.
    Rahman A; Pachter L
    Genome Biol; 2013 Jan; 14(1):R8. PubMed ID: 23360652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canu: scalable and accurate long-read assembly via adaptive
    Koren S; Walenz BP; Berlin K; Miller JR; Bergman NH; Phillippy AM
    Genome Res; 2017 May; 27(5):722-736. PubMed ID: 28298431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.