These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22068594)

  • 1. Differentially photo-crosslinked polymers enable self-assembling microfluidics.
    Jamal M; Zarafshar AM; Gracias DH
    Nat Commun; 2011 Nov; 2():527. PubMed ID: 22068594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional fluidic self-assembly by axis translation of two-dimensionally fabricated microcomponents in railed microfluidics.
    Chung SE; Jung Y; Kwon S
    Small; 2011 Mar; 7(6):796-803. PubMed ID: 21322106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps.
    Agirregabiria M; Blanco FJ; Berganzo J; Arroyo MT; Fullaondo A; Mayora K; Ruano-López JM
    Lab Chip; 2005 May; 5(5):545-52. PubMed ID: 15856093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Biomolecule Microarrays Using Rapid Photochemical Surface Patterning in Thiol-Ene-Based Microfluidic Devices.
    Jönsson A; Lafleur JP
    Methods Mol Biol; 2018; 1771():171-182. PubMed ID: 29633213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiphoton writing of three-dimensional fluidic channels within a porous matrix.
    Lee JT; George MC; Moore JS; Braun PV
    J Am Chem Soc; 2009 Aug; 131(32):11294-5. PubMed ID: 19637870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique.
    Metz S; Jiguet S; Bertsch A; Renaud P
    Lab Chip; 2004 Apr; 4(2):114-20. PubMed ID: 15052350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From anisotropic photo-fluidity towards nanomanipulation in the optical near-field.
    Karageorgiev P; Neher D; Schulz B; Stiller B; Pietsch U; Giersig M; Brehmer L
    Nat Mater; 2005 Sep; 4(9):699-703. PubMed ID: 16113680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex micropatterning of proteins within microfluidic channels.
    Kim M; Doh J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():782-5. PubMed ID: 25570075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using pattern homogenization of binary grayscale masks to fabricate microfluidic structures with 3D topography.
    Atencia J; Barnes S; Douglas J; Meacham M; Locascio LE
    Lab Chip; 2007 Nov; 7(11):1567-73. PubMed ID: 17960287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-wafer in-situ fabrication and packaging of microfluidic flow cytometer with photo-patternable adhesive polymers.
    de Wijs K; Liu C; Majeed B; Jans K; O'Callaghan JM; Loo J; Sohn E; Peeters S; Van Roosbroeck R; Miyazaki T; Hoshiko K; Nishimura I; Hieda K; Lagae L
    Biomed Microdevices; 2017 Nov; 20(1):2. PubMed ID: 29159519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling electrodeposition with layer-by-layer assembly to address proteins within microfluidic channels.
    Wang Y; Liu Y; Cheng Y; Kim E; Rubloff GW; Bentley WE; Payne GF
    Adv Mater; 2011 Dec; 23(48):5817-21. PubMed ID: 22102376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green microfluidics made of corn proteins.
    Hsiao A; Luecha J; Kokini J; Liu L
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8400-3. PubMed ID: 22256296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics for synthetic biology: from design to execution.
    Ferry MS; Razinkov IA; Hasty J
    Methods Enzymol; 2011; 497():295-372. PubMed ID: 21601093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications.
    Leclerc E; Furukawa KS; Miyata F; Sakai Y; Ushida T; Fujii T
    Biomaterials; 2004 Aug; 25(19):4683-90. PubMed ID: 15120514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles.
    Zhang L; Beatty A; Lu L; Abdalrahman A; Makris TM; Wang G; Wang Q
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110768. PubMed ID: 32279782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parylene flexible neural probes integrated with microfluidic channels.
    Takeuchi S; Ziegler D; Yoshida Y; Mabuchi K; Suzuki T
    Lab Chip; 2005 May; 5(5):519-23. PubMed ID: 15856088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP).
    Hutchison JB; Haraldsson KT; Good BT; Sebra RP; Luo N; Anseth KS; Bowman CN
    Lab Chip; 2004 Dec; 4(6):658-62. PubMed ID: 15570381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical supramolecular spinning of nanofibers in a microfluidic channel: tuning nanostructures at a dynamic interface.
    Numata M; Takigami Y; Takayama M; Kozawa T; Hirose N
    Chemistry; 2012 Oct; 18(41):13008-17. PubMed ID: 22945551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.