BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 22068611)

  • 1. The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic β-cell mass: implications in the development of type-2 diabetes.
    Xie J; Herbert TP
    Cell Mol Life Sci; 2012 Apr; 69(8):1289-304. PubMed ID: 22068611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the mammalian target of rapamycin (mTOR) complexes in pancreatic β-cell mass regulation.
    Bartolome A; Guillén C
    Vitam Horm; 2014; 95():425-69. PubMed ID: 24559928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2.
    Lakshmipathi J; Alvarez-Perez JC; Rosselot C; Casinelli GP; Stamateris RE; Rausell-Palamos F; O'Donnell CP; Vasavada RC; Scott DK; Alonso LC; Garcia-Ocaña A
    Diabetes; 2016 May; 65(5):1283-96. PubMed ID: 26868297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular Senescence in Diabetes Mellitus: Distinct Senotherapeutic Strategies for Adipose Tissue and Pancreatic β Cells.
    Murakami T; Inagaki N; Kondoh H
    Front Endocrinol (Lausanne); 2022; 13():869414. PubMed ID: 35432205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mTOR: A double-edged sword for diabetes.
    Tuo Y; Xiang M
    J Leukoc Biol; 2019 Aug; 106(2):385-395. PubMed ID: 29578634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of natural mTOR inhibitors in treatment of diabetes mellitus.
    Noori T; Sureda A; Shirooie S
    Fundam Clin Pharmacol; 2023 Jun; 37(3):461-479. PubMed ID: 36415968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of mTOR in the Regulation of Pancreatic β-Cell Mass and Insulin Secretion.
    Asahara SI; Inoue H; Watanabe H; Kido Y
    Biomolecules; 2022 Apr; 12(5):. PubMed ID: 35625542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes.
    Fraenkel M; Ketzinel-Gilad M; Ariav Y; Pappo O; Karaca M; Castel J; Berthault MF; Magnan C; Cerasi E; Kaiser N; Leibowitz G
    Diabetes; 2008 Apr; 57(4):945-57. PubMed ID: 18174523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes.
    Pasquier A; Vivot K; Erbs E; Spiegelhalter C; Zhang Z; Aubert V; Liu Z; Senkara M; Maillard E; Pinget M; Kerr-Conte J; Pattou F; Marciniak G; Ganzhorn A; Ronchi P; Schieber NL; Schwab Y; Saftig P; Goginashvili A; Ricci R
    Nat Commun; 2019 Jul; 10(1):3312. PubMed ID: 31346174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of mTOR in the adaptation and failure of beta-cells in type 2 diabetes.
    Leibowitz G; Cerasi E; Ketzinel-Gilad M
    Diabetes Obes Metab; 2008 Nov; 10 Suppl 4():157-69. PubMed ID: 18834443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-cell function and mass in type 2 diabetes.
    Larsen MO
    Dan Med Bull; 2009 Aug; 56(3):153-64. PubMed ID: 19728971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SAD-A and AMPK kinases: the "yin and yang" regulators of mTORC1 signaling in pancreatic β cells.
    Nie J; Han X; Shi Y
    Cell Cycle; 2013 Nov; 12(21):3366-9. PubMed ID: 24047693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Signaling Pathways Associated with Pancreatic β-cell Adaptive Flexibility in Compensation of Obesity-linked Diabetes in
    Kang T; Boland BB; Jensen P; Alarcon C; Nawrocki A; Grimsby JS; Rhodes CJ; Larsen MR
    Mol Cell Proteomics; 2020 Jun; 19(6):971-993. PubMed ID: 32265294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mTOR in aging, metabolism, and cancer.
    Cornu M; Albert V; Hall MN
    Curr Opin Genet Dev; 2013 Feb; 23(1):53-62. PubMed ID: 23317514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of protein kinase C-ζ in pancreatic β-cells in vivo improves glucose tolerance and induces β-cell expansion via mTOR activation.
    Velazquez-Garcia S; Valle S; Rosa TC; Takane KK; Demirci C; Alvarez-Perez JC; Mellado-Gil JM; Ernst S; Scott DK; Vasavada RC; Alonso LC; Garcia-Ocaña A
    Diabetes; 2011 Oct; 60(10):2546-59. PubMed ID: 21911744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MTOR and Beta Cell Adaptation in T2D.
    Bartolomé A; Pajvani UB
    J Clin Endocrinol Metab; 2021 Mar; 106(3):e1466-e1467. PubMed ID: 33274365
    [No Abstract]   [Full Text] [Related]  

  • 17. Overexpression of Kinase-Dead mTOR Impairs Glucose Homeostasis by Regulating Insulin Secretion and Not β-Cell Mass.
    Alejandro EU; Bozadjieva N; Blandino-Rosano M; Wasan MA; Elghazi L; Vadrevu S; Satin L; Bernal-Mizrachi E
    Diabetes; 2017 Aug; 66(8):2150-2162. PubMed ID: 28546423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diosgenin reduces phosphodiesterase 3B (PDE3B) through AMP-activated protein kinase/ mechanistic target of rapamycin (AMPK/mTOR) signaling pathway to ameliorate streptozotocin-induced pancreatic β-cell apoptosis and dysfunction.
    Ma L; Zhang C; Wu L; Qin L; Liu T
    Bioengineered; 2022 Feb; 13(2):2217-2225. PubMed ID: 35030973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription factor-7-like 2 (
    Nguyen-Tu MS; da Silva Xavier G; Leclerc I; Rutter GA
    J Biol Chem; 2018 Sep; 293(36):14178-14189. PubMed ID: 29967064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bmal1 is required for beta cell compensatory expansion, survival and metabolic adaptation to diet-induced obesity in mice.
    Rakshit K; Hsu TW; Matveyenko AV
    Diabetologia; 2016 Apr; 59(4):734-43. PubMed ID: 26762333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.