BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 22068720)

  • 1. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.
    Hidalgo-Bastida LA; Thirunavukkarasu S; Griffiths S; Cartmell SH; Naire S
    Biotechnol Bioeng; 2012 Apr; 109(4):1095-9. PubMed ID: 22068720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of diffusivity and pressure drop in flow-through and parallel-flow bioreactors during tissue regeneration.
    Podichetty JT; Dhane DV; Madihally SV
    Biotechnol Prog; 2012 Jul; 28(4):1045-54. PubMed ID: 22473960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow modeling in a novel non-perfusion conical bioreactor.
    Singh H; Ang ES; Lim TT; Hutmacher DW
    Biotechnol Bioeng; 2007 Aug; 97(5):1291-9. PubMed ID: 17216661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modelling of fibre-enhanced perfusion inside a tissue-engineering bioreactor.
    Whittaker RJ; Booth R; Dyson R; Bailey C; Parsons Chini L; Naire S; Payvandi S; Rong Z; Woollard H; Cummings LJ; Waters SL; Mawasse L; Chaudhuri JB; Ellis MJ; Michael V; Kuiper NJ; Cartmell S
    J Theor Biol; 2009 Feb; 256(4):533-46. PubMed ID: 19014952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A continuum model of cell proliferation and nutrient transport in a perfusion bioreactor.
    Shakeel M; Matthews PC; Graham RS; Waters SL
    Math Med Biol; 2013 Mar; 30(1):21-44. PubMed ID: 21994793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds.
    Jaasma MJ; Plunkett NA; O'Brien FJ
    J Biotechnol; 2008 Feb; 133(4):490-6. PubMed ID: 18221813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor.
    Li D; Tang T; Lu J; Dai K
    Tissue Eng Part A; 2009 Oct; 15(10):2773-83. PubMed ID: 19226211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors.
    Jungreuthmayer C; Donahue SW; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Tissue Eng Part A; 2009 May; 15(5):1141-9. PubMed ID: 18831686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Fabrication of scaffold with controlled porous structure and flow perfusion culture in vitro].
    Li X; Li DC; Wang L; Lu BH; Wang Z
    Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):579-83. PubMed ID: 16176096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of cell cultures in perfusion bioreactors.
    Yan X; Bergstrom DJ; Chen XB
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2568-75. PubMed ID: 22772976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial optimization in perfusion bioreactors improves bone tissue-engineered construct quality attributes.
    Papantoniou I; Guyot Y; Sonnaert M; Kerckhofs G; Luyten FP; Geris L; Schrooten J
    Biotechnol Bioeng; 2014 Dec; 111(12):2560-70. PubMed ID: 24902541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model.
    Jungreuthmayer C; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Med Eng Phys; 2009 May; 31(4):420-7. PubMed ID: 19109048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3D-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation.
    Seddiqi H; Saatchi A; Amoabediny G; Helder MN; Abbasi Ravasjani S; Safari Hajat Aghaei M; Jin J; Zandieh-Doulabi B; Klein-Nulend J
    Comput Biol Med; 2020 Sep; 124():103826. PubMed ID: 32798924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiphysics/multiscale 2D numerical simulation of scaffold-based cartilage regeneration under interstitial perfusion in a bioreactor.
    Sacco R; Causin P; Zunino P; Raimondi MT
    Biomech Model Mechanobiol; 2011 Jul; 10(4):577-89. PubMed ID: 20865436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element study of scaffold architecture design and culture conditions for tissue engineering.
    Olivares AL; Marsal E; Planell JA; Lacroix D
    Biomaterials; 2009 Oct; 30(30):6142-9. PubMed ID: 19674779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental study of the effects of fluid dynamics on the construction of large-scale tissue engineered bone].
    Li D; Dai K; Tang T; Lu J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Apr; 23(4):478-82. PubMed ID: 19431991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor.
    Guyot Y; Luyten FP; Schrooten J; Papantoniou I; Geris L
    Biotechnol Bioeng; 2015 Dec; 112(12):2591-600. PubMed ID: 26059101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational fluid dynamics for improved bioreactor design and 3D culture.
    Hutmacher DW; Singh H
    Trends Biotechnol; 2008 Apr; 26(4):166-72. PubMed ID: 18261813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational fluid dynamics modeling of momentum transport in rotating wall perfused bioreactor for cartilage tissue engineering.
    Cinbiz MN; Tığli RS; Beşkardeş IG; Gümüşderelioğlu M; Colak U
    J Biotechnol; 2010 Nov; 150(3):389-95. PubMed ID: 20887759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational tool for the upscaling of regular scaffolds during in vitro perfusion culture.
    Truscello S; Schrooten J; Van Oosterwyck H
    Tissue Eng Part C Methods; 2011 Jun; 17(6):619-30. PubMed ID: 21332298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.