These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 22069163)

  • 21. Bonding in ammonia borane: an analysis based on the natural orbitals for chemical valence and the extended transition state method (ETS-NOCV).
    Mitoraj MP
    J Phys Chem A; 2011 Dec; 115(51):14708-16. PubMed ID: 22085293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ruthenium-Catalyzed Ammonia Borane Dehydrogenation: Mechanism and Utility.
    Zhang X; Kam L; Trerise R; Williams TJ
    Acc Chem Res; 2017 Jan; 50(1):86-95. PubMed ID: 28032510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Infrared hole burning and conformational change in a borane-ammonia complex.
    Endicott CA; Strauss HL; Hughes CC; Trauner D
    J Phys Chem A; 2005 Sep; 109(34):7714-7. PubMed ID: 16834146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoporous nickel spheres as highly active catalyst for hydrogen generation from ammonia borane.
    Cao CY; Chen CQ; Li W; Song WG; Cai W
    ChemSusChem; 2010 Nov; 3(11):1241-4. PubMed ID: 21031496
    [No Abstract]   [Full Text] [Related]  

  • 25. Metal-Free Ammonia-Borane Dehydrogenation Catalyzed by a Bis(borane) Lewis Acid.
    Lu Z; Schweighauser L; Hausmann H; Wegner HA
    Angew Chem Int Ed Engl; 2015 Dec; 54(51):15556-9. PubMed ID: 26537288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The synergistic effect of Rh-Ni catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borane for chemical hydrogen storage.
    Zhong DC; Aranishi K; Singh AK; Demirci UB; Xu Q
    Chem Commun (Camb); 2012 Dec; 48(98):11945-7. PubMed ID: 23064157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High resolution 15N NMR of the 225 K phase transition of ammonia borane (NH3BH3): mixed order-disorder and displacive behavior.
    Gunaydin-Sen O; Achey R; Dalal NS; Stowe A; Autrey T
    J Phys Chem B; 2007 Feb; 111(4):677-81. PubMed ID: 17249810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen-rich boron-containing materials for hydrogen storage.
    Wang P; Kang XD
    Dalton Trans; 2008 Oct; (40):5400-13. PubMed ID: 19082020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ruthenium complexes with cooperative PNP ligands: bifunctional catalysts for the dehydrogenation of ammonia-borane.
    Käss M; Friedrich A; Drees M; Schneider S
    Angew Chem Int Ed Engl; 2009; 48(5):905-7. PubMed ID: 19116993
    [No Abstract]   [Full Text] [Related]  

  • 30. One-pot synthesis of colloidally robust rhodium(0) nanoparticles and their catalytic activity in the dehydrogenation of ammonia-borane for chemical hydrogen storage.
    Ayvalı T; Zahmakıran M; Özkar S
    Dalton Trans; 2011 Apr; 40(14):3584-91. PubMed ID: 21373677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of highly active Pt-CeO2 hybrids with tunable secondary nanostructures for the catalytic hydrolysis of ammonia borane.
    Wang X; Liu D; Song S; Zhang H
    Chem Commun (Camb); 2012 Oct; 48(82):10207-9. PubMed ID: 22968230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. B-N compounds for chemical hydrogen storage.
    Hamilton CW; Baker RT; Staubitz A; Manners I
    Chem Soc Rev; 2009 Jan; 38(1):279-93. PubMed ID: 19088978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dihydrogen Phosphate Stabilized Ruthenium(0) Nanoparticles: Efficient Nanocatalyst for The Hydrolysis of Ammonia-Borane at Room Temperature.
    Durap F; Caliskan S; Özkar S; Karakas K; Zahmakiran M
    Materials (Basel); 2015 Jul; 8(7):4226-4238. PubMed ID: 28793435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The hydrogen issue.
    Armaroli N; Balzani V
    ChemSusChem; 2011 Jan; 4(1):21-36. PubMed ID: 21226208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A robust, air-stable, reusable ruthenium catalyst for dehydrogenation of ammonia borane.
    Conley BL; Guess D; Williams TJ
    J Am Chem Soc; 2011 Sep; 133(36):14212-5. PubMed ID: 21827173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reaction of a P/Al-based frustrated Lewis pair with ammonia, borane, and amine-boranes: adduct formation and catalytic dehydrogenation.
    Appelt C; Slootweg JC; Lammertsma K; Uhl W
    Angew Chem Int Ed Engl; 2013 Apr; 52(15):4256-9. PubMed ID: 23471587
    [No Abstract]   [Full Text] [Related]  

  • 37. Coordination and dehydrogenation of amine-boranes at metal centers.
    Alcaraz G; Sabo-Etienne S
    Angew Chem Int Ed Engl; 2010 Sep; 49(40):7170-9. PubMed ID: 20721992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane.
    Umegaki T; Xu Q; Kojima Y
    Materials (Basel); 2015 Jul; 8(7):4512-4534. PubMed ID: 28793453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Palladium nanoparticles supported on cobalt(II,III) oxide nanocatalyst: High reusability and outstanding catalytic activity in hydrolytic dehydrogenation of ammonia borane.
    Akbayrak S; Özkar S
    J Colloid Interface Sci; 2022 Nov; 626():752-758. PubMed ID: 35820210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and dynamical properties of solid ammonia borane under high pressure.
    Wang L; Bao K; Meng X; Wang X; Jiang T; Cui T; Liu B; Zou G
    J Chem Phys; 2011 Jan; 134(2):024517. PubMed ID: 21241130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.