These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 22069247)
1. Augmented reality and haptic interfaces for robot-assisted surgery. Yamamoto T; Abolhassani N; Jung S; Okamura AM; Judkins TN Int J Med Robot; 2012 Mar; 8(1):45-56. PubMed ID: 22069247 [TBL] [Abstract][Full Text] [Related]
2. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies. Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342 [TBL] [Abstract][Full Text] [Related]
3. Haptic feedback in OP:Sense - augmented reality in telemanipulated robotic surgery. Beyl T; Nicolai P; Mönnich H; Raczkowksy J; Wörn H Stud Health Technol Inform; 2012; 173():58-63. PubMed ID: 22356957 [TBL] [Abstract][Full Text] [Related]
4. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation. Meli L; Pacchierotti C; Prattichizzo D Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28218455 [TBL] [Abstract][Full Text] [Related]
5. Using simulation to design control strategies for robotic no-scar surgery. De Donno A; Nageotte F; Zanne P; Goffin L; de Mathelin M Stud Health Technol Inform; 2013; 184():117-21. PubMed ID: 23400142 [TBL] [Abstract][Full Text] [Related]
6. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators. Ottensmeyer MP; Ben-Ur E; Salisbury JK Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548 [TBL] [Abstract][Full Text] [Related]
7. Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches. Lum MJ; Rosen J; Sinanan MN; Hannaford B IEEE Trans Biomed Eng; 2006 Jul; 53(7):1440-5. PubMed ID: 16830951 [TBL] [Abstract][Full Text] [Related]
8. Development of a medical robot system for minimally invasive surgery. Feng M; Fu Y; Pan B; Liu C Int J Med Robot; 2012 Mar; 8(1):85-96. PubMed ID: 21990214 [TBL] [Abstract][Full Text] [Related]
9. A technical challenge for robot-assisted minimally invasive surgery: precision surgery on soft tissue. Stallkamp J; Schraft RD Int J Med Robot; 2005 Jan; 1(2):48-52. PubMed ID: 17518378 [TBL] [Abstract][Full Text] [Related]
10. From medical images to minimally invasive intervention: Computer assistance for robotic surgery. Lee SL; Lerotic M; Vitiello V; Giannarou S; Kwok KW; Visentini-Scarzanella M; Yang GZ Comput Med Imaging Graph; 2010 Jan; 34(1):33-45. PubMed ID: 19699056 [TBL] [Abstract][Full Text] [Related]
11. Optical merger of direct vision with virtual images for scaled teleoperation. Clanton ST; Wang DC; Chib VS; Matsuoka Y; Stetten GD IEEE Trans Vis Comput Graph; 2006; 12(2):277-85. PubMed ID: 16509386 [TBL] [Abstract][Full Text] [Related]
12. Effect of sensory substitution on suture manipulation forces for surgical teleoperation. Kitagawa M; Dokko D; Okamura AM; Bethea BT; Yuh DD Stud Health Technol Inform; 2004; 98():157-63. PubMed ID: 15544263 [TBL] [Abstract][Full Text] [Related]
13. Mechatronic design of haptic forceps for robotic surgery. Rizun P; Gunn D; Cox B; Sutherland G Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653 [TBL] [Abstract][Full Text] [Related]
14. Lapabot: a compact telesurgical robot system for minimally invasive surgery: part I. System description. Choi J; Park JW; Kim DJ; Shin J; Park CY; Lee JC; Jo YH Minim Invasive Ther Allied Technol; 2012 May; 21(3):188-94. PubMed ID: 21745135 [TBL] [Abstract][Full Text] [Related]
15. Gaze-Contingent Motor Channelling, haptic constraints and associated cognitive demand for robotic MIS. Mylonas GP; Kwok KW; James DR; Leff D; Orihuela-Espina F; Darzi A; Yang GZ Med Image Anal; 2012 Apr; 16(3):612-31. PubMed ID: 20889367 [TBL] [Abstract][Full Text] [Related]
16. [Haptic tracking control for minimally invasive robotic surgery]. Xu Z; Song C; Wu W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Jun; 29(3):407-10. PubMed ID: 22826928 [TBL] [Abstract][Full Text] [Related]
17. Haptic feedback control in medical robots through fractional viscoelastic tissue model. Kobayashi Y; Moreira P; Liu C; Poignet P; Zemiti N; Fujie MG Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6704-8. PubMed ID: 22255877 [TBL] [Abstract][Full Text] [Related]
18. [The overview of robot surgery]. Dohi T Nihon Rinsho; 2004 Apr; 62(4):824-30. PubMed ID: 15106355 [TBL] [Abstract][Full Text] [Related]
19. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery. Abeykoon AM; Ohnishi K Int J Med Robot; 2007 Sep; 3(3):271-80. PubMed ID: 17729375 [TBL] [Abstract][Full Text] [Related]