BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22069273)

  • 1. Characterization of the regulatory roles of the SUMO.
    Hwang KW; Won TJ; Kim H; Chun HJ; Chun T; Park Y
    Diabetes Metab Res Rev; 2011 Nov; 27(8):854-61. PubMed ID: 22069273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erratum to ‘‘Characterization of the regulatory roles of the SUMO.
    Hwang KW; Won TJ; Kim H; Chun HJ; Chun T; Park Y
    Diabetes Metab Res Rev; 2012 Feb; 28(2):196-202. PubMed ID: 22423385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mouse small ubiquitin-like modifier-2 (SUMO-2) inhibits interleukin-12 (IL-12) production in mature dendritic cells by blocking the translocation of the p65 subunit of NFκB into the nucleus.
    Kim EM; Lee HH; Kim SH; Son YO; Lee SJ; Han J; Bae J; Kim SJ; Park CG; Park Y; Hwang KW; Chun T
    Mol Immunol; 2011 Sep; 48(15-16):2189-97. PubMed ID: 21632113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SUMO2 overexpression enhances the generation and function of interleukin-17-producing CD8⁺ T cells in mice.
    Won TJ; Lee YJ; Hyung KE; Yang E; Sohn UD; Min HY; Lee DI; Park SY; Hwang KW
    Cell Signal; 2015 Jun; 27(6):1246-52. PubMed ID: 25762490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes.
    Guo D; Li M; Zhang Y; Yang P; Eckenrode S; Hopkins D; Zheng W; Purohit S; Podolsky RH; Muir A; Wang J; Dong Z; Brusko T; Atkinson M; Pozzilli P; Zeidler A; Raffel LJ; Jacob CO; Park Y; Serrano-Rios M; Larrad MT; Zhang Z; Garchon HJ; Bach JF; Rotter JI; She JX; Wang CY
    Nat Genet; 2004 Aug; 36(8):837-41. PubMed ID: 15247916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a negative feedback network between SUMO4 expression and NFkappaB transcriptional activity.
    Wang CY; Yang P; Li M; Gong F
    Biochem Biophys Res Commun; 2009 Apr; 381(4):477-81. PubMed ID: 19222990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflammatory factor-specific sumoylation regulates NF-κB signalling in glomerular cells from diabetic rats.
    Chen S; Yang T; Liu F; Li H; Guo Y; Yang H; Xu J; Song J; Zhu Z; Liu D
    Inflamm Res; 2014 Jan; 63(1):23-31. PubMed ID: 24173240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High glucose induces activation of NF-κB inflammatory signaling through IκBα sumoylation in rat mesangial cells.
    Huang W; Xu L; Zhou X; Gao C; Yang M; Chen G; Zhu J; Jiang L; Gan H; Gou F; Feng H; Peng J; Xu Y
    Biochem Biophys Res Commun; 2013 Aug; 438(3):568-74. PubMed ID: 23911785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of SUMO4 M55V polymorphism with autoimmune diabetes in Latvian patients.
    Sedimbi SK; Shastry A; Park Y; Rumba I; Sanjeevi CB
    Ann N Y Acad Sci; 2006 Oct; 1079():273-7. PubMed ID: 17130565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenosine signaling mediates SUMO-1 modification of IkappaBalpha during hypoxia and reoxygenation.
    Liu Q; Li J; Khoury J; Colgan SP; Ibla JC
    J Biol Chem; 2009 May; 284(20):13686-13695. PubMed ID: 19297320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SUMOylation attenuates the transcriptional activity of the NF-κB subunit RelB.
    Leidner J; Voogdt C; Niedenthal R; Möller P; Marienfeld U; Marienfeld RB
    J Cell Biochem; 2014 Aug; 115(8):1430-40. PubMed ID: 24616021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional variants in SUMO4, TAB2, and NFkappaB and the risk of type 1 diabetes.
    Kosoy R; Concannon P
    Genes Immun; 2005 May; 6(3):231-5. PubMed ID: 15729364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. APPL1 prevents pancreatic beta cell death and inflammation by dampening NFκB activation in a mouse model of type 1 diabetes.
    Jiang X; Zhou Y; Wu KK; Chen Z; Xu A; Cheng KK
    Diabetologia; 2017 Mar; 60(3):464-474. PubMed ID: 28011992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sumoylation Modulates the Susceptibility to Type 1 Diabetes.
    Zhang J; Chen Z; Zhou Z; Yang P; Wang CY
    Adv Exp Med Biol; 2017; 963():299-322. PubMed ID: 28197920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SUMO-defective c-Maf preferentially transactivates Il21 to exacerbate autoimmune diabetes.
    Hsu CY; Yeh LT; Fu SH; Chien MW; Liu YW; Miaw SC; Chang DM; Sytwu HK
    J Clin Invest; 2018 Aug; 128(9):3779-3793. PubMed ID: 30059018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the role of small ubiquitin-like modifier 4 as a general autoimmunity locus in the Japanese population.
    Tsurumaru M; Kawasaki E; Ida H; Migita K; Moriuchi A; Fukushima K; Fukushima T; Abiru N; Yamasaki H; Noso S; Ikegami H; Awata T; Sasaki H; Eguchi K
    J Clin Endocrinol Metab; 2006 Aug; 91(8):3138-43. PubMed ID: 16735488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pancreatic IL-4 expression results in islet-reactive Th2 cells that inhibit diabetogenic lymphocytes in the nonobese diabetic mouse.
    Gallichan WS; Balasa B; Davies JD; Sarvetnick N
    J Immunol; 1999 Aug; 163(3):1696-703. PubMed ID: 10415077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thy1.2 driven expression of transgenic His₆-SUMO2 in the brain of mice alters a restricted set of genes.
    Rossner MJ; Tirard M
    Brain Res; 2014 Aug; 1575():1-11. PubMed ID: 24887641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. At the crossroads of SUMO and NF-kappaB.
    Kracklauer MP; Schmidt C
    Mol Cancer; 2003 Nov; 2():39. PubMed ID: 14613580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IL-6 induced proliferation and cytotoxic activity of CD8(+) T cells is elevated by SUMO2 overexpression.
    Lee YJ; Won TJ; Hyung KE; Jang YW; Kim SJ; Lee do I; Park SY; Hwang KW
    Arch Pharm Res; 2016 May; 39(5):705-12. PubMed ID: 27071615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.