These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 22069325)
1. Inference of functional properties from large-scale analysis of enzyme superfamilies. Brown SD; Babbitt PC J Biol Chem; 2012 Jan; 287(1):35-42. PubMed ID: 22069325 [TBL] [Abstract][Full Text] [Related]
2. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies. Chiang RA; Sali A; Babbitt PC PLoS Comput Biol; 2008 Aug; 4(8):e1000142. PubMed ID: 18670595 [TBL] [Abstract][Full Text] [Related]
3. A strategy for large-scale comparison of evolutionary- and reaction-based classifications of enzyme function. Holliday GL; Brown SD; Mischel D; Polacco BJ; Babbitt PC Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32449511 [TBL] [Abstract][Full Text] [Related]
4. A global view of structure-function relationships in the tautomerase superfamily. Davidson R; Baas BJ; Akiva E; Holliday GL; Polacco BJ; LeVieux JA; Pullara CR; Zhang YJ; Whitman CP; Babbitt PC J Biol Chem; 2018 Feb; 293(7):2342-2357. PubMed ID: 29184004 [TBL] [Abstract][Full Text] [Related]
5. Evolution of function in protein superfamilies, from a structural perspective. Todd AE; Orengo CA; Thornton JM J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560 [TBL] [Abstract][Full Text] [Related]
6. Representing structure-function relationships in mechanistically diverse enzyme superfamilies. Pegg SC; Brown S; Ojha S; Huang CC; Ferrin TE; Babbitt PC Pac Symp Biocomput; 2005; ():358-69. PubMed ID: 15759641 [TBL] [Abstract][Full Text] [Related]
8. Relationships between functional subclasses and information contained in active-site and ligand-binding residues in diverse superfamilies. Nagao C; Nagano N; Mizuguchi K Proteins; 2010 Aug; 78(10):2369-84. PubMed ID: 20544971 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily. Akiva E; Copp JN; Tokuriki N; Babbitt PC Proc Natl Acad Sci U S A; 2017 Nov; 114(45):E9549-E9558. PubMed ID: 29078300 [TBL] [Abstract][Full Text] [Related]
10. Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies. Furnham N; Dawson NL; Rahman SA; Thornton JM; Orengo CA J Mol Biol; 2016 Jan; 428(2 Pt A):253-267. PubMed ID: 26585402 [TBL] [Abstract][Full Text] [Related]
11. An assessment of catalytic residue 3D ensembles for the prediction of enzyme function. Žváček C; Friedrichs G; Heizinger L; Merkl R BMC Bioinformatics; 2015 Nov; 16():359. PubMed ID: 26538500 [TBL] [Abstract][Full Text] [Related]
12. Prediction of detailed enzyme functions and identification of specificity determining residues by random forests. Nagao C; Nagano N; Mizuguchi K PLoS One; 2014; 9(1):e84623. PubMed ID: 24416252 [TBL] [Abstract][Full Text] [Related]
13. Exploring the sequence, function, and evolutionary space of protein superfamilies using sequence similarity networks and phylogenetic reconstructions. Copp JN; Anderson DW; Akiva E; Babbitt PC; Tokuriki N Methods Enzymol; 2019; 620():315-347. PubMed ID: 31072492 [TBL] [Abstract][Full Text] [Related]
14. Thematic minireview series on enzyme evolution in the post-genomic era. Allewell NM J Biol Chem; 2012 Jan; 287(1):1-2. PubMed ID: 22069328 [TBL] [Abstract][Full Text] [Related]
15. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. Atkinson HJ; Morris JH; Ferrin TE; Babbitt PC PLoS One; 2009; 4(2):e4345. PubMed ID: 19190775 [TBL] [Abstract][Full Text] [Related]
16. A gold standard set of mechanistically diverse enzyme superfamilies. Brown SD; Gerlt JA; Seffernick JL; Babbitt PC Genome Biol; 2006; 7(1):R8. PubMed ID: 16507141 [TBL] [Abstract][Full Text] [Related]