These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 22069330)
1. Toward a systems biology perspective on enzyme evolution. Copley SD J Biol Chem; 2012 Jan; 287(1):3-10. PubMed ID: 22069330 [TBL] [Abstract][Full Text] [Related]
2. Network context and selection in the evolution to enzyme specificity. Nam H; Lewis NE; Lerman JA; Lee DH; Chang RL; Kim D; Palsson BO Science; 2012 Aug; 337(6098):1101-4. PubMed ID: 22936779 [TBL] [Abstract][Full Text] [Related]
4. Early evolution of efficient enzymes and genome organization. Szilágyi A; Kun A; Szathmáry E Biol Direct; 2012 Oct; 7():38; discussion 38. PubMed ID: 23114029 [TBL] [Abstract][Full Text] [Related]
5. Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence-Function Relationships. Baier F; Copp JN; Tokuriki N Biochemistry; 2016 Nov; 55(46):6375-6388. PubMed ID: 27802036 [TBL] [Abstract][Full Text] [Related]
6. Enzyme recruitment and its role in metabolic expansion. Schulenburg C; Miller BG Biochemistry; 2014 Feb; 53(5):836-45. PubMed ID: 24483367 [TBL] [Abstract][Full Text] [Related]
7. Metabolite-Enzyme Coevolution: From Single Enzymes to Metabolic Pathways and Networks. Noda-Garcia L; Liebermeister W; Tawfik DS Annu Rev Biochem; 2018 Jun; 87():187-216. PubMed ID: 29925259 [TBL] [Abstract][Full Text] [Related]
8. On the levels of enzymatic substrate specificity: implications for the early evolution of metabolic pathways. Lazcano A; Díaz-Villagómez E; Mills T; Oró J Adv Space Res; 1995 Mar; 15(3):345-56. PubMed ID: 11539248 [TBL] [Abstract][Full Text] [Related]
9. Influence of metabolic network structure and function on enzyme evolution. Vitkup D; Kharchenko P; Wagner A Genome Biol; 2006; 7(5):R39. PubMed ID: 16684370 [TBL] [Abstract][Full Text] [Related]
10. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies. Chiang RA; Sali A; Babbitt PC PLoS Comput Biol; 2008 Aug; 4(8):e1000142. PubMed ID: 18670595 [TBL] [Abstract][Full Text] [Related]
11. Predicting Evolution Using Regulatory Architecture. Nghe P; de Vos MGJ; Kingma E; Kogenaru M; Poelwijk FJ; Laan L; Tans SJ Annu Rev Biophys; 2020 May; 49():181-197. PubMed ID: 32040932 [TBL] [Abstract][Full Text] [Related]
12. Prediction of enzymatic pathways by integrative pathway mapping. Calhoun S; Korczynska M; Wichelecki DJ; San Francisco B; Zhao S; Rodionov DA; Vetting MW; Al-Obaidi NF; Lin H; O'Meara MJ; Scott DA; Morris JH; Russel D; Almo SC; Osterman AL; Gerlt JA; Jacobson MP; Shoichet BK; Sali A Elife; 2018 Jan; 7():. PubMed ID: 29377793 [TBL] [Abstract][Full Text] [Related]
13. Epistasis--the essential role of gene interactions in the structure and evolution of genetic systems. Phillips PC Nat Rev Genet; 2008 Nov; 9(11):855-67. PubMed ID: 18852697 [TBL] [Abstract][Full Text] [Related]
14. Thematic minireview series on enzyme evolution in the post-genomic era. Allewell NM J Biol Chem; 2012 Jan; 287(1):1-2. PubMed ID: 22069328 [TBL] [Abstract][Full Text] [Related]
16. Systems-biology approaches for predicting genomic evolution. Papp B; Notebaart RA; Pál C Nat Rev Genet; 2011 Aug; 12(9):591-602. PubMed ID: 21808261 [TBL] [Abstract][Full Text] [Related]
17. Why measure enzyme activities in the era of systems biology? Stitt M; Gibon Y Trends Plant Sci; 2014 Apr; 19(4):256-65. PubMed ID: 24332227 [TBL] [Abstract][Full Text] [Related]
18. Evolution of new enzymes by gene duplication and divergence. Copley SD FEBS J; 2020 Apr; 287(7):1262-1283. PubMed ID: 32250558 [TBL] [Abstract][Full Text] [Related]
19. Metabolic flux is a determinant of the evolutionary rates of enzyme-encoding genes. Colombo M; Laayouni H; Invergo BM; Bertranpetit J; Montanucci L Evolution; 2014 Feb; 68(2):605-13. PubMed ID: 24102646 [TBL] [Abstract][Full Text] [Related]