These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 22069535)
1. CyanoHAB occurrence and water irrigation cyanotoxin contamination: ecological impacts and potential health risks. Saqrane S; Oudra B Toxins (Basel); 2009 Dec; 1(2):113-22. PubMed ID: 22069535 [TBL] [Abstract][Full Text] [Related]
2. Impacts of Microcystins on Morphological and Physiological Parameters of Agricultural Plants: A Review. Campos A; Redouane EM; Freitas M; Amaral S; Azevedo T; Loss L; Máthé C; Mohamed ZA; Oudra B; Vasconcelos V Plants (Basel); 2021 Mar; 10(4):. PubMed ID: 33800599 [TBL] [Abstract][Full Text] [Related]
3. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health. Machado J; Campos A; Vasconcelos V; Freitas M Environ Res; 2017 Feb; 153():191-204. PubMed ID: 27702441 [TBL] [Abstract][Full Text] [Related]
4. Cyanotoxins uptake and accumulation in crops: Phytotoxicity and implications on human health. Weralupitiya C; Wanigatunge RP; Gunawardana D; Vithanage M; Magana-Arachchi D Toxicon; 2022 May; 211():21-35. PubMed ID: 35288171 [TBL] [Abstract][Full Text] [Related]
5. Physiological and biochemical defense reactions of Vicia faba L.-Rhizobium symbiosis face to chronic exposure to cyanobacterial bloom extract containing microcystins. Lahrouni M; Oufdou K; El Khalloufi F; Baz M; Lafuente A; Dary M; Pajuelo E; Oudra B Environ Sci Pollut Res Int; 2013 Aug; 20(8):5405-15. PubMed ID: 23417437 [TBL] [Abstract][Full Text] [Related]
6. Health-based cyanotoxin guideline values allow for cyanotoxin-based monitoring and efficient public health response to cyanobacterial blooms. Farrer D; Counter M; Hillwig R; Cude C Toxins (Basel); 2015 Feb; 7(2):457-77. PubMed ID: 25664510 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of a satellite-based cyanobacteria bloom detection algorithm using field-measured microcystin data. Mishra S; Stumpf RP; Schaeffer B; Werdell PJ; Loftin KA; Meredith A Sci Total Environ; 2021 Jun; 774():145462. PubMed ID: 33609824 [TBL] [Abstract][Full Text] [Related]
8. Cyanophage technology in removal of cyanobacteria mediated harmful algal blooms: A novel and eco-friendly method. Bhatt P; Engel BA; Reuhs M; Simsek H Chemosphere; 2023 Feb; 315():137769. PubMed ID: 36623591 [TBL] [Abstract][Full Text] [Related]
9. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Corbel S; Mougin C; Bouaïcha N Chemosphere; 2014 Feb; 96():1-15. PubMed ID: 24012139 [TBL] [Abstract][Full Text] [Related]
10. Microcystin levels in irrigation water and field-vegetable plants, and food safety risk assessment: A case study from Egypt. Mohamed ZA; Fathi AA; Mostafa Y; Alamri S; Hashem M; Alrumman S; Basha OR Toxicon; 2024 Aug; 247():107846. PubMed ID: 38964620 [TBL] [Abstract][Full Text] [Related]
11. Microcystin Contamination in Irrigation Water and Health Risk. Haida M; El Khalloufi F; Mugani R; Essadki Y; Campos A; Vasconcelos V; Oudra B Toxins (Basel); 2024 Apr; 16(4):. PubMed ID: 38668621 [TBL] [Abstract][Full Text] [Related]
12. Fresh produce and their soils accumulate cyanotoxins from irrigation water: Implications for public health and food security. Lee S; Jiang X; Manubolu M; Riedl K; Ludsin SA; Martin JF; Lee J Food Res Int; 2017 Dec; 102():234-245. PubMed ID: 29195944 [TBL] [Abstract][Full Text] [Related]
14. Colonization of toxic cyanobacteria on the surface and inside of leafy green: A hidden source of cyanotoxin production and exposure. Lee S; Kim J; Lee J Food Microbiol; 2021 Apr; 94():103655. PubMed ID: 33279080 [TBL] [Abstract][Full Text] [Related]
15. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Svirčev Z; Lalić D; Bojadžija Savić G; Tokodi N; Drobac Backović D; Chen L; Meriluoto J; Codd GA Arch Toxicol; 2019 Sep; 93(9):2429-2481. PubMed ID: 31350576 [TBL] [Abstract][Full Text] [Related]
16. Risk Levels of Toxic Cyanobacteria in Portuguese Recreational Freshwaters. Menezes C; Churro C; Dias E Toxins (Basel); 2017 Oct; 9(10):. PubMed ID: 29057822 [TBL] [Abstract][Full Text] [Related]
17. Cyanotoxins in groundwater; occurrence, potential sources, health impacts and knowledge gap for public health. Mutoti MI; Edokpayi JN; Mutileni N; Durowoju OS; Munyai FL Toxicon; 2023 Apr; 226():107077. PubMed ID: 36893989 [TBL] [Abstract][Full Text] [Related]
18. An overview of the accumulation of microcystins in aquatic ecosystems. Pham TL; Utsumi M J Environ Manage; 2018 May; 213():520-529. PubMed ID: 29472035 [TBL] [Abstract][Full Text] [Related]
19. Cyanotoxin management and human health risk mitigation in recreational waters. Koreivienė J; Anne O; Kasperovičienė J; Burškytė V Environ Monit Assess; 2014 Jul; 186(7):4443-59. PubMed ID: 24664523 [TBL] [Abstract][Full Text] [Related]
20. Risk assessment of cyanobacteria toxic metabolites on freshwater ecosystems applying molecular methods. Moreira C; Gomes C; Vasconcelos V; Antunes A Environ Sci Pollut Res Int; 2023 Jan; 30(1):219-227. PubMed ID: 35902522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]