BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 22069557)

  • 1. Genomic damage in endstage renal disease-contribution of uremic toxins.
    Schupp N; Heidland A; Stopper H
    Toxins (Basel); 2010 Oct; 2(10):2340-58. PubMed ID: 22069557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micronucleus frequency in chronic kidney disease patients: A review.
    Stopper H; Bankoglu EE; Marcos R; Pastor S
    Mutat Res Rev Mutat Res; 2020; 786():108340. PubMed ID: 33339580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New approaches for the treatment of genomic damage in end-stage renal disease.
    Schupp N; Schmid U; Heidland A; Stopper H
    J Ren Nutr; 2008 Jan; 18(1):127-33. PubMed ID: 18089459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic damage in chronic renal failure--potential therapeutic interventions.
    Stopper H; Schupp N; Klassen A; Sebekova K; Heidland A
    J Ren Nutr; 2005 Jan; 15(1):81-6. PubMed ID: 15648013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of the genomic damage level in haemodialysis patients by folic acid and vitamin B12 supplementation.
    Stopper H; Treutlein AT; Bahner U; Schupp N; Schmid U; Brink A; Perna A; Heidland A
    Nephrol Dial Transplant; 2008 Oct; 23(10):3272-9. PubMed ID: 18469307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AT1 receptor antagonist candesartan attenuates genomic damage in peripheral blood lymphocytes of patients on maintenance hemodialysis treatment.
    Schupp N; Rutkowski P; Sebeková K; Klassen A; Bahner U; Grupp C; Heidland A; Stopper H
    Kidney Blood Press Res; 2011; 34(3):167-72. PubMed ID: 21474964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benfotiamine reduces genomic damage in peripheral lymphocytes of hemodialysis patients.
    Schupp N; Dette EM; Schmid U; Bahner U; Winkler M; Heidland A; Stopper H
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Sep; 378(3):283-91. PubMed ID: 18509620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protection of Residual Renal Function and Nutritional Treatment: First Step Strategy for Reduction of Uremic Toxins in End-Stage Kidney Disease Patients.
    Cupisti A; Bolasco P; D'Alessandro C; Giannese D; Sabatino A; Fiaccadori E
    Toxins (Basel); 2021 Apr; 13(4):. PubMed ID: 33921862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges of reducing protein-bound uremic toxin levels in chronic kidney disease and end stage renal disease.
    Faria M; de Pinho MN
    Transl Res; 2021 Mar; 229():115-134. PubMed ID: 32891787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Future Avenues to Decrease Uremic Toxin Concentration.
    Vanholder RC; Eloot S; Glorieux GL
    Am J Kidney Dis; 2016 Apr; 67(4):664-76. PubMed ID: 26500179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uremic toxins and peritoneal dialysis.
    Lameire N; Vanholder R; De Smet R
    Kidney Int Suppl; 2001 Feb; 78():S292-7. PubMed ID: 11169029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Vitamin D in Maintaining Renal Epithelial Barrier Function in Uremic Conditions.
    Mihajlovic M; Fedecostante M; Oost MJ; Steenhuis SKP; Lentjes EGWM; Maitimu-Smeele I; Janssen MJ; Hilbrands LB; Masereeuw R
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation between different treatment modalities and genomic damage of end-stage renal failure patients.
    Kobras K; Schupp N; Nehrlich K; Adelhardt M; Bahner U; Vienken J; Heidland A; Sebekova K; Stopper H
    Kidney Blood Press Res; 2006; 29(1):10-7. PubMed ID: 16582572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxic damage in end-stage renal disease.
    Gandhi G; Mehta T; Contractor P; Tung G
    Mutat Res Genet Toxicol Environ Mutagen; 2018 Nov; 835():1-10. PubMed ID: 30249475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Uremic Score Reflecting Accumulation of Specific Uremic Toxins More Precisely Predicts One-Year Mortality after Hemodialysis Commencement: A Retrospective Cohort Study.
    Arai Y; Shioji S; Tanaka H; Katagiri D; Hinoshita F
    Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33019590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time in hemodialysis modulates the levels of genetic damage in hemodialysis patients.
    Rodríguez-Ribera L; Stoyanova E; Corredor Z; Coll E; Silva I; Diaz JM; Ballarin J; Marcos R; Pastor S
    Environ Mol Mutagen; 2014 May; 55(4):363-8. PubMed ID: 24436196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing end-stage renal disease therapy for the patient with diabetes mellitus.
    Friedlander MA; Hricik DE
    Semin Nephrol; 1997 Jul; 17(4):331-45. PubMed ID: 9241718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation, clearance, toxicity, and monitoring possibilities of unaccounted uremic toxins for improved dialysis prescriptions.
    Atherton JG; Hains DS; Bissler J; Pendley BD; Lindner E
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F890-F902. PubMed ID: 29537310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of different hemodialysis regimens on genomic damage in end-stage renal failure.
    Schupp N; Stopper H; Rutkowski P; Kobras K; Nebel M; Bahner U; Vienken J; Heidland A
    Semin Nephrol; 2006 Jan; 26(1):28-32. PubMed ID: 16412822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An LC-MS/MS analytical method for the determination of uremic toxins in patients with end-stage renal disease.
    Ma YR; Xin MY; Li K; Wang H; Rao Z; Liu TX; Wu XA
    J Pharm Biomed Anal; 2020 Nov; 191():113551. PubMed ID: 32889350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.