These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 22069738)
1. A public platform for the verification of the phenotypic effect of candidate genes for resistance to aflatoxin accumulation and Aspergillus flavus infection in maize. Warburton ML; Williams WP; Hawkins L; Bridges S; Gresham C; Harper J; Ozkan S; Mylroie JE; Shan X Toxins (Basel); 2011 Jul; 3(7):754-65. PubMed ID: 22069738 [TBL] [Abstract][Full Text] [Related]
2. Identification of maize genes associated with host plant resistance or susceptibility to Aspergillus flavus infection and aflatoxin accumulation. Kelley RY; Williams WP; Mylroie JE; Boykin DL; Harper JW; Windham GL; Ankala A; Shan X PLoS One; 2012; 7(5):e36892. PubMed ID: 22606305 [TBL] [Abstract][Full Text] [Related]
3. Survey of Candidate Genes for Maize Resistance to Infection by Aspergillus flavus and/or Aflatoxin Contamination. Hawkins LK; Warburton ML; Tang J; Tomashek J; Alves Oliveira D; Ogunola OF; Smith JS; Williams WP Toxins (Basel); 2018 Jan; 10(2):. PubMed ID: 29385107 [TBL] [Abstract][Full Text] [Related]
4. Confirmation and Fine Mapping of a Major QTL for Aflatoxin Resistance in Maize Using a Combination of Linkage and Association Mapping. Zhang Y; Cui M; Zhang J; Zhang L; Li C; Kan X; Sun Q; Deng D; Yin Z Toxins (Basel); 2016 Sep; 8(9):. PubMed ID: 27598199 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance. Hawkins LK; Mylroie JE; Oliveira DA; Smith JS; Ozkan S; Windham GL; Williams WP; Warburton ML PLoS One; 2015; 10(6):e0126185. PubMed ID: 26090679 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional profiles uncover Aspergillus flavus-induced resistance in maize kernels. Luo M; Brown RL; Chen ZY; Menkir A; Yu J; Bhatnagar D Toxins (Basel); 2011 Jul; 3(7):766-86. PubMed ID: 22069739 [TBL] [Abstract][Full Text] [Related]
8. Comparative transcriptome profiling and co-expression network analysis uncover the key genes associated withearly-stage resistance to Aspergillus flavus in maize. Liu H; Wu H; Wang Y; Wang H; Chen S; Yin Z BMC Plant Biol; 2021 May; 21(1):216. PubMed ID: 33985439 [TBL] [Abstract][Full Text] [Related]
9. Comparative Analysis of Multiple GWAS Results Identifies Metabolic Pathways Associated with Resistance to Warburton ML; Jeffers D; Smith JS; Scapim C; Uhdre R; Thrash A; Williams WP Toxins (Basel); 2022 Oct; 14(11):. PubMed ID: 36355988 [TBL] [Abstract][Full Text] [Related]
10. Mapping Quantitative Trait Loci Associated With Resistance to Aflatoxin Accumulation in Maize Inbred Mp719. Womack ED; Williams WP; Windham GL; Xu W Front Microbiol; 2020; 11():45. PubMed ID: 32117099 [TBL] [Abstract][Full Text] [Related]
11. High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hypogaea). Khan SA; Chen H; Deng Y; Chen Y; Zhang C; Cai T; Ali N; Mamadou G; Xie D; Guo B; Varshney RK; Zhuang W Theor Appl Genet; 2020 Jul; 133(7):2239-2257. PubMed ID: 32285164 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance. Ogunola OF; Hawkins LK; Mylroie E; Kolomiets MV; Borrego E; Tang JD; Williams WP; Warburton ML PLoS One; 2017; 12(7):e0181265. PubMed ID: 28715485 [TBL] [Abstract][Full Text] [Related]
13. A USA-Africa collaborative strategy for identifying, characterizing, and developing maize germplasm with resistance to aflatoxin contamination. Menkir A; Brown RL; Bandyopadhyay R; Chen ZY; Cleveland TE Mycopathologia; 2006 Sep; 162(3):225-32. PubMed ID: 16944289 [TBL] [Abstract][Full Text] [Related]
14. Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture. Masanga JO; Matheka JM; Omer RA; Ommeh SC; Monda EO; Alakonya AE Plant Cell Rep; 2015 Aug; 34(8):1379-87. PubMed ID: 25895735 [TBL] [Abstract][Full Text] [Related]
15. Using genome-wide associations to identify metabolic pathways involved in maize aflatoxin accumulation resistance. Tang JD; Perkins A; Williams WP; Warburton ML BMC Genomics; 2015 Sep; 16(1):673. PubMed ID: 26334534 [TBL] [Abstract][Full Text] [Related]
16. Developing resistance to aflatoxin in maize and cottonseed. Cary JW; Rajasekaran K; Brown RL; Luo M; Chen ZY; Bhatnagar D Toxins (Basel); 2011 Jun; 3(6):678-96. PubMed ID: 22069734 [TBL] [Abstract][Full Text] [Related]
17. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Rajasekaran K; Sayler RJ; Sickler CM; Majumdar R; Jaynes JM; Cary JW Plant Sci; 2018 May; 270():150-156. PubMed ID: 29576068 [TBL] [Abstract][Full Text] [Related]
18. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Gilbert MK; Majumdar R; Rajasekaran K; Chen ZY; Wei Q; Sickler CM; Lebar MD; Cary JW; Frame BR; Wang K Planta; 2018 Jun; 247(6):1465-1473. PubMed ID: 29541880 [TBL] [Abstract][Full Text] [Related]
19. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Bhatnagar-Mathur P; Sunkara S; Bhatnagar-Panwar M; Waliyar F; Sharma KK Plant Sci; 2015 May; 234():119-32. PubMed ID: 25804815 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide association study leads to novel genetic insights into resistance to Aspergillus flavus in maize kernels. Han G; Li C; Xiang F; Zhao Q; Zhao Y; Cai R; Cheng B; Wang X; Tao F BMC Plant Biol; 2020 May; 20(1):206. PubMed ID: 32393173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]