These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 22069792)
1. Arbuscular mycorrhizal fungi alter the response of growth and nutrient uptake of snap bean (Phaseolus vulgaris L.) to O3. Wang S; Feng Z; Wang X; Gong W J Environ Sci (China); 2011; 23(6):968-74. PubMed ID: 22069792 [TBL] [Abstract][Full Text] [Related]
2. [Effect of elevated O3 on rhizosphere microorganisms of two genotypes of snap bean]. Wang SG; Gong WL; Wang XK; Diao XJ Huan Jing Ke Xue; 2011 Oct; 32(10):3033-9. PubMed ID: 22279920 [TBL] [Abstract][Full Text] [Related]
3. Effects of elevated O₃ on microbes in the rhizosphere of mycorrhizal snap bean with different O₃ sensitivity. Wang S; Wang F; Diao X; He L Can J Microbiol; 2014 Feb; 60(2):93-103. PubMed ID: 24498986 [TBL] [Abstract][Full Text] [Related]
5. Biogeochemical distribution of Pb and Zn forms in two calcareous soils affected by mycorrhizal symbiosis and alfalfa rhizosphere. Moshiri F; Ebrahimi H; Ardakani MR; Rejali F; Mousavi SM Ecotoxicol Environ Saf; 2019 Sep; 179():241-248. PubMed ID: 31051397 [TBL] [Abstract][Full Text] [Related]
6. Arbuscular mycorrhiza formation and its function under elevated atmospheric O Wang S; Augé RM; Toler HD Environ Pollut; 2017 Jul; 226():104-117. PubMed ID: 28411495 [TBL] [Abstract][Full Text] [Related]
7. Tripartite Interactions Between Endophytic Fungi, Arbuscular Mycorrhizal Fungi, and Leymus chinensis. Liu H; Wu M; Liu J; Qu Y; Gao Y; Ren A Microb Ecol; 2020 Jan; 79(1):98-109. PubMed ID: 31177395 [TBL] [Abstract][Full Text] [Related]
8. Mycorrhizal impact on competitive relationships and yield parameters in Phaseolus vulgaris L. - weed mixtures. Rashidi S; Yousefi AR; Pouryousef M; Goicoechea N Mycorrhiza; 2021 Oct; 31(5):599-612. PubMed ID: 34476620 [TBL] [Abstract][Full Text] [Related]
9. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Chang Q; Diao FW; Wang QF; Pan L; Dang ZH; Guo W Environ Pollut; 2018 Oct; 241():607-615. PubMed ID: 29886381 [TBL] [Abstract][Full Text] [Related]
10. Arbuscular mycorrhizal fungi enhance the copper tolerance of Tagetes patula through the sorption and barrier mechanisms of intraradical hyphae. Zhou X; Fu L; Xia Y; Zheng L; Chen C; Shen Z; Chen Y Metallomics; 2017 Jul; 9(7):936-948. PubMed ID: 28613326 [TBL] [Abstract][Full Text] [Related]
11. [Effect of elevated O3 on the arbuscular mycorrhizal (AM) structure and glomalin production in two genotypes of snap bean]. Wang PT; Diao XJ; Wang SG Huan Jing Ke Xue; 2012 Oct; 33(10):3667-74. PubMed ID: 23234004 [TBL] [Abstract][Full Text] [Related]
12. Nitrate regulates rhizobial and mycorrhizal symbiosis in common bean (Phaseolus vulgaris L.). Nanjareddy K; Blanco L; Arthikala MK; Affantrange XA; Sánchez F; Lara M J Integr Plant Biol; 2014 Mar; 56(3):281-98. PubMed ID: 24387000 [TBL] [Abstract][Full Text] [Related]
13. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Abd-Alla MH; El-Enany AW; Nafady NA; Khalaf DM; Morsy FM Microbiol Res; 2014 Jan; 169(1):49-58. PubMed ID: 23920230 [TBL] [Abstract][Full Text] [Related]
14. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. Porras-Soriano A; Soriano-Martín ML; Porras-Piedra A; Azcón R J Plant Physiol; 2009 Sep; 166(13):1350-9. PubMed ID: 19342122 [TBL] [Abstract][Full Text] [Related]
15. Variability in colonization of arbuscular mycorrhizal fungi and its effect on mycorrhizal dependency of improved and unimproved soybean cultivars. Salloum MS; Guzzo MC; Velazquez MS; Sagadin MB; Luna CM Can J Microbiol; 2016 Dec; 62(12):1034-1040. PubMed ID: 27784163 [TBL] [Abstract][Full Text] [Related]
16. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. Verzeaux J; Hirel B; Dubois F; Lea PJ; Tétu T Plant Sci; 2017 Nov; 264():48-56. PubMed ID: 28969802 [TBL] [Abstract][Full Text] [Related]
17. Proteomic analysis of the response of Funnelifor mismosseae/Medicago sativa to atrazine stress. Sui X; Wu Q; Chang W; Fan X; Song F BMC Plant Biol; 2018 Nov; 18(1):289. PubMed ID: 30463523 [TBL] [Abstract][Full Text] [Related]
18. Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Rabie GH Mycorrhiza; 2005 May; 15(3):225-30. PubMed ID: 15765207 [TBL] [Abstract][Full Text] [Related]
19. Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicus-Glomus intraradices mycorrhizal symbiosis. Vijayakumar V; Liebisch G; Buer B; Xue L; Gerlach N; Blau S; Schmitz J; Bucher M Plant Cell Environ; 2016 Feb; 39(2):393-415. PubMed ID: 26297195 [TBL] [Abstract][Full Text] [Related]
20. The effect of Cd on mycorrhizal development and enzyme activity of Glomus mosseae and Glomus intraradices in Astragalus sinicus L. Li Y; Peng J; Shi P; Zhao B Chemosphere; 2009 May; 75(7):894-9. PubMed ID: 19232430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]