These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22070038)

  • 1. Stabilization and solidification of elemental mercury for safe disposal and/or long-term storage.
    Lee TG; Eom Y; Lee CH; Song KS
    J Air Waste Manag Assoc; 2011 Oct; 61(10):1057-62. PubMed ID: 22070038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur polymer solidification/stabilization of elemental mercury waste.
    Fuhrmann M; Melamed D; Kalb PD; Adams JW; Milian LW
    Waste Manag; 2002; 22(3):327-33. PubMed ID: 11952179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaching of mercury-containing cement monoliths aged for one year.
    Svensson M; Allard B
    Waste Manag; 2008; 28(3):597-603. PubMed ID: 17544639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of mercury-containing wastes using sulfide.
    Piao H; Bishop PL
    Environ Pollut; 2006 Feb; 139(3):498-506. PubMed ID: 16099084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of metacinnabar by milling of liquid mercury and elemental sulfur for long term mercury storage.
    López FA; López-Delgado A; Padilla I; Tayibi H; Alguacil FJ
    Sci Total Environ; 2010 Sep; 408(20):4341-5. PubMed ID: 20673963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes.
    Randall P; Chattopadhyay S
    J Hazard Mater; 2004 Oct; 114(1-3):211-23. PubMed ID: 15511593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of ground granulated blast furnace slag on stabilization/solidification of simulated mercury-doped wastes in chemically bonded phosphate ceramics.
    Liu Z; Qian G; Zhou J; Li C; Xu Y; Qin Z
    J Hazard Mater; 2008 Aug; 157(1):146-53. PubMed ID: 18289781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury leaching from hazardous industrial wastes stabilized by sulfur polymer encapsulation.
    López FA; Alguacil FJ; Rodríguez O; Sierra MJ; Millán R
    Waste Manag; 2015 Jan; 35():301-6. PubMed ID: 25458763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concerns on liquid mercury and mercury-containing wastes: a review of the treatment technologies for the safe storage.
    Rodríguez O; Padilla I; Tayibi H; López-Delgado A
    J Environ Manage; 2012 Jun; 101():197-205. PubMed ID: 22446074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization/solidification (S/S) of mercury-containing wastes using reactivated carbon and Portland cement.
    Zhang J; Bishop PL
    J Hazard Mater; 2002 May; 92(2):199-212. PubMed ID: 11992703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes.
    Cho JH; Eom Y; Lee TG
    J Hazard Mater; 2014 Aug; 278():474-82. PubMed ID: 24997263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings.
    Lowry GV; Shaw S; Kim CS; Rytuba JJ; Brown GE
    Environ Sci Technol; 2004 Oct; 38(19):5101-11. PubMed ID: 15506205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilizing conditions of metal mercury in mercury sulfurization using a planetary ball mill.
    Fukuda N; Takaoka M; Oshita K; Mizuno T
    J Hazard Mater; 2014 Jul; 276():433-41. PubMed ID: 24929784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of international trends in mercury management and available options for permanent or long-term mercury storage.
    Lee KJ; Lee TG
    J Hazard Mater; 2012 Nov; 241-242():1-13. PubMed ID: 23040312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced elemental mercury removal from coal-fired flue gas by sulfur-chlorine compounds.
    Yan NQ; Qu Z; Chi Y; Qiao SH; Dod RL; Chang SG; Miller C
    Environ Sci Technol; 2009 Jul; 43(14):5410-5. PubMed ID: 19708374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaching behaviour of hazardous waste under the impact of different ambient conditions.
    Pecorini I; Baldi F; Bacchi D; Carnevale EA; Corti A
    Waste Manag; 2017 May; 63():96-106. PubMed ID: 27810123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon bed mercury emissions control for mixed waste treatment.
    Soelberg N; Enneking J
    J Air Waste Manag Assoc; 2010 Nov; 60(11):1341-52. PubMed ID: 21141428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent lights: future hazardous waste of America?
    Healthc Hazard Mater Manage; 1996 Nov; 10(2):1-6. PubMed ID: 10163146
    [No Abstract]   [Full Text] [Related]  

  • 19. Recovery and safer disposal of phosphate coating sludge by solidification/stabilization.
    Ucaroglu S; Talinli I
    J Environ Manage; 2012 Aug; 105():131-7. PubMed ID: 22542981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Health impact of a proposed waste-to-energy facility in Illinois.
    Hallenbeck WH
    Bull Environ Contam Toxicol; 1995 Mar; 54(3):342-8. PubMed ID: 7749264
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.