These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 22070463)
1. Extensive characterization of Tupaia belangeri neuropeptidome using an integrated mass spectrometric approach. Petruzziello F; Fouillen L; Wadensten H; Kretz R; Andren PE; Rainer G; Zhang X J Proteome Res; 2012 Feb; 11(2):886-96. PubMed ID: 22070463 [TBL] [Abstract][Full Text] [Related]
2. Evaluating the phylogenetic position of Chinese tree shrew (Tupaia belangeri chinensis) based on complete mitochondrial genome: implication for using tree shrew as an alternative experimental animal to primates in biomedical research. Xu L; Chen SY; Nie WH; Jiang XL; Yao YG J Genet Genomics; 2012 Mar; 39(3):131-7. PubMed ID: 22464472 [TBL] [Abstract][Full Text] [Related]
3. High identification rates of endogenous neuropeptides from mouse brain. Zhang X; Petruzziello F; Zani F; Fouillen L; Andren PE; Solinas G; Rainer G J Proteome Res; 2012 May; 11(5):2819-27. PubMed ID: 22424378 [TBL] [Abstract][Full Text] [Related]
4. Sequence similarity-driven proteomics in organisms with unknown genomes by LC-MS/MS and automated de novo sequencing. Waridel P; Frank A; Thomas H; Surendranath V; Sunyaev S; Pevzner P; Shevchenko A Proteomics; 2007 Jul; 7(14):2318-29. PubMed ID: 17623296 [TBL] [Abstract][Full Text] [Related]
5. Sample-dependent effects on the neuropeptidome detected in rat brain tissue preparations by capillary liquid chromatography with tandem mass spectrometry. Parkin MC; Wei H; O'Callaghan JP; Kennedy RT Anal Chem; 2005 Oct; 77(19):6331-8. PubMed ID: 16194096 [TBL] [Abstract][Full Text] [Related]
6. Proteomic characteristics of the liver and skeletal muscle in the Chinese tree shrew (Tupaia belangeri chinensis). Li R; Xu W; Wang Z; Liang B; Wu JR; Zeng R Protein Cell; 2012 Sep; 3(9):691-700. PubMed ID: 22886497 [TBL] [Abstract][Full Text] [Related]
7. Broad characterization of endogenous peptides in the tree shrew visual system. Ranc V; Petruzziello F; Kretz R; Argandoña EG; Zhang X; Rainer G J Proteomics; 2012 May; 75(9):2526-35. PubMed ID: 22326962 [TBL] [Abstract][Full Text] [Related]
8. Extensive de novo sequencing of new parvalbumin isoforms using a novel combination of bottom-up proteomics, accurate molecular mass measurement by FTICR-MS, and selected MS/MS ion monitoring. Carrera M; Cañas B; Vázquez J; Gallardo JM J Proteome Res; 2010 Sep; 9(9):4393-406. PubMed ID: 20586483 [TBL] [Abstract][Full Text] [Related]
9. Protein identification assisted by the prediction of retention time in liquid chromatography/tandem mass spectrometry. Wang Y; Zhang J; Gu X; Zhang XM J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Nov; 826(1-2):122-8. PubMed ID: 16159714 [TBL] [Abstract][Full Text] [Related]
10. Integrated analysis of the cerebrospinal fluid peptidome and proteome. Zougman A; Pilch B; Podtelejnikov A; Kiehntopf M; Schnabel C; Kumar C; Mann M J Proteome Res; 2008 Jan; 7(1):386-99. PubMed ID: 18052119 [TBL] [Abstract][Full Text] [Related]
11. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). Wu SL; Kim J; Hancock WS; Karger B J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266 [TBL] [Abstract][Full Text] [Related]
12. De novo sequencing methods in proteomics. Hughes C; Ma B; Lajoie GA Methods Mol Biol; 2010; 604():105-21. PubMed ID: 20013367 [TBL] [Abstract][Full Text] [Related]
13. Proteomics-grade de novo sequencing approach. Savitski MM; Nielsen ML; Kjeldsen F; Zubarev RA J Proteome Res; 2005; 4(6):2348-54. PubMed ID: 16335984 [TBL] [Abstract][Full Text] [Related]
14. Enhanced characterization of complex proteomic samples using LC-MALDI MS/MS: exclusion of redundant peptides from MS/MS analysis in replicate runs. Chen HS; Rejtar T; Andreev V; Moskovets E; Karger BL Anal Chem; 2005 Dec; 77(23):7816-25. PubMed ID: 16316193 [TBL] [Abstract][Full Text] [Related]
15. Shotgun proteome analysis of Rhodospirillum rubrum S1H: integrating data from gel-free and gel-based peptides fractionation methods. Mastroleo F; Leroy B; Van Houdt R; s' Heeren C; Mergeay M; Hendrickx L; Wattiez R J Proteome Res; 2009 May; 8(5):2530-41. PubMed ID: 19243122 [TBL] [Abstract][Full Text] [Related]
16. A multi-scale strategy for discovery of novel endogenous neuropeptides in the crustacean nervous system. Jia C; Lietz CB; Ye H; Hui L; Yu Q; Yoo S; Li L J Proteomics; 2013 Oct; 91():1-12. PubMed ID: 23806756 [TBL] [Abstract][Full Text] [Related]
17. Defining the Neuropeptidome of the Spiny Lobster Panulirus interruptus Brain Using a Multidimensional Mass Spectrometry-Based Platform. Ye H; Wang J; Zhang Z; Jia C; Schmerberg C; Catherman AD; Thomas PM; Kelleher NL; Li L J Proteome Res; 2015 Nov; 14(11):4776-91. PubMed ID: 26390183 [TBL] [Abstract][Full Text] [Related]
18. [Molecular cloning of Tupaia belangeri chinensis neuropeptide Y and homology comparison with other analogues from primates]. Dong L; Lv LB; Lai R Dongwuxue Yanjiu; 2012 Feb; 33(1):75-8. PubMed ID: 22345012 [TBL] [Abstract][Full Text] [Related]
19. An algorithm for identifying multiply modified endogenous proteins using both full-scan and high-resolution tandem mass spectrometric data. Mazur MT; Fyhr R Rapid Commun Mass Spectrom; 2011 Dec; 25(23):3617-26. PubMed ID: 22095511 [TBL] [Abstract][Full Text] [Related]
20. Exploring the precursor ion exclusion feature of liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry for improving protein identification in shotgun proteome analysis. Wang N; Li L Anal Chem; 2008 Jun; 80(12):4696-710. PubMed ID: 18479145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]