These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 22070728)
1. Vertical gradient in soil temperature stimulates development and increases biomass accumulation in barley. Füllner K; Temperton VM; Rascher U; Jahnke S; Rist R; Schurr U; Kuhn AJ Plant Cell Environ; 2012 May; 35(5):884-92. PubMed ID: 22070728 [TBL] [Abstract][Full Text] [Related]
2. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration. Martin-Vertedor AI; Dodd IC Plant Cell Environ; 2011 Jul; 34(7):1164-75. PubMed ID: 21410712 [TBL] [Abstract][Full Text] [Related]
3. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature. Zhao H; Li Y; Zhang X; Korpelainen H; Li C Tree Physiol; 2012 Nov; 32(11):1325-38. PubMed ID: 22918961 [TBL] [Abstract][Full Text] [Related]
4. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Liu H; Zhang J; Christie P; Zhang F Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566 [TBL] [Abstract][Full Text] [Related]
5. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Domisch T; Finér L; Lehto T Tree Physiol; 2001 May; 21(7):465-72. PubMed ID: 11340047 [TBL] [Abstract][Full Text] [Related]
6. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range. Wertin TM; McGuire MA; Teskey RO Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670 [TBL] [Abstract][Full Text] [Related]
7. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Zhu YG; Smith FA; Smith SE Mycorrhiza; 2003 Apr; 13(2):93-100. PubMed ID: 12682831 [TBL] [Abstract][Full Text] [Related]
8. Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Chang P; Gerhardt KE; Huang XD; Yu XM; Glick BR; Gerwing PD; Greenberg BM Int J Phytoremediation; 2014; 16(7-12):1133-47. PubMed ID: 24933907 [TBL] [Abstract][Full Text] [Related]
9. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.). Talbi Zribi O; Abdelly C; Debez A Plant Biol (Stuttg); 2011 Nov; 13(6):872-80. PubMed ID: 21974779 [TBL] [Abstract][Full Text] [Related]
10. Urban environment of New York City promotes growth in northern red oak seedlings. Searle SY; Turnbull MH; Boelman NT; Schuster WS; Yakir D; Griffin KL Tree Physiol; 2012 Apr; 32(4):389-400. PubMed ID: 22491523 [TBL] [Abstract][Full Text] [Related]
11. Root cooling strongly affects diel leaf growth dynamics, water and carbohydrate relations in Ricinus communis. Poiré R; Schneider H; Thorpe MR; Kuhn AJ; Schurr U; Walter A Plant Cell Environ; 2010 Mar; 33(3):408-17. PubMed ID: 19968824 [TBL] [Abstract][Full Text] [Related]
12. Growth and physiology of olive pioneer and fibrous roots exposed to soil moisture deficits. Polverigiani S; McCormack ML; Mueller CW; Eissenstat DM Tree Physiol; 2011 Nov; 31(11):1228-37. PubMed ID: 22084020 [TBL] [Abstract][Full Text] [Related]
13. Growth responses, biomass partitioning, and nitrogen isotopes of prairie legumes in response to elevated temperature and varying nitrogen source in a growth chamber experiment. Whittington HR; Deede L; Powers JS Am J Bot; 2012 May; 99(5):838-46. PubMed ID: 22539505 [TBL] [Abstract][Full Text] [Related]
14. Interactive effects of soil temperature and moisture on Concord grape root respiration. Huang X; Lakso AN; Eissenstat DM J Exp Bot; 2005 Oct; 56(420):2651-60. PubMed ID: 16143721 [TBL] [Abstract][Full Text] [Related]
15. Responses to iron limitation in Hordeum vulgare L. as affected by the atmospheric CO2 concentration. Haase S; Rothe A; Kania A; Wasaki J; Römheld V; Engels C; Kandeler E; Neumann G J Environ Qual; 2008; 37(3):1254-62. PubMed ID: 18453445 [TBL] [Abstract][Full Text] [Related]
16. Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana. De Pessemier J; Chardon F; Juraniec M; Delaplace P; Hermans C Mech Dev; 2013 Jan; 130(1):45-53. PubMed ID: 22683348 [TBL] [Abstract][Full Text] [Related]
17. Volatile communication between barley plants affects biomass allocation. Ninkovic V J Exp Bot; 2003 Aug; 54(389):1931-9. PubMed ID: 12815028 [TBL] [Abstract][Full Text] [Related]
18. Contrasting responses to water-deficit among Encelia canescens populations distributed along an aridity gradient. Carvajal DE; Loayza AP; Squeo FA Am J Bot; 2015 Sep; 102(9):1552-7. PubMed ID: 26373975 [TBL] [Abstract][Full Text] [Related]
19. The dynamics of root meristem distribution in the soil. Dupuy L; Vignes M; McKenzie BM; White PJ Plant Cell Environ; 2010 Mar; 33(3):358-69. PubMed ID: 19930127 [TBL] [Abstract][Full Text] [Related]
20. Root proliferation of Norway spruce and Scots pine in response to local magnesium supply in soil. Zhang J; George E Tree Physiol; 2009 Feb; 29(2):199-206. PubMed ID: 19203945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]