These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22070761)

  • 1. Suboptimal light conditions negatively affect the heterotrophy of Planktothrix rubescens but are beneficial for accompanying Limnohabitans spp.
    Horňák K; Zeder M; Blom JF; Posch T; Pernthaler J
    Environ Microbiol; 2012 Mar; 14(3):765-78. PubMed ID: 22070761
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Lenard T; Poniewozik M
    Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The uptake of amino acids by the cyanobacterium Planktothrix rubescens is stimulated by light at low irradiances.
    Walsby AE; Jüttner F
    FEMS Microbiol Ecol; 2006 Oct; 58(1):14-22. PubMed ID: 16958904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanobacteria biennal dynamic in a volcanic mesotrophic lake in central Italy: Strategies to prevent dangerous human exposures to cyanotoxins.
    Manganelli M; Stefanelli M; Vichi S; Andreani P; Nascetti G; Scialanca F; Scardala S; Testai E; Funari E
    Toxicon; 2016 Jun; 115():28-40. PubMed ID: 26948426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Red Harmful Plague in Times of Climate Change: Blooms of the Cyanobacterium
    Knapp D; Fernández Castro B; Marty D; Loher E; Köster O; Wüest A; Posch T
    Front Microbiol; 2021; 12():705914. PubMed ID: 34512582
    [No Abstract]   [Full Text] [Related]  

  • 6. Chemotype diversity in Planktothrix rubescens (cyanobacteria) populations is correlated to lake depth.
    Haruštiaková D; Welker M
    Environ Microbiol Rep; 2017 Apr; 9(2):158-168. PubMed ID: 28085220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grazing of Nuclearia thermophila and Nuclearia delicatula (Nucleariidae, Opisthokonta) on the toxic cyanobacterium Planktothrix rubescens.
    Dirren S; Pitsch G; Silva MOD; Posch T
    Eur J Protistol; 2017 Aug; 60():87-101. PubMed ID: 28675820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral toxicity of the microcystin-containing cyanobacterium Planktothrix rubescens in European whitefish (Coregonus lavaretus).
    Ernst B; Hoeger SJ; O'Brien E; Dietrich DR
    Aquat Toxicol; 2006 Aug; 79(1):31-40. PubMed ID: 16806524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The consequences of internal waves for phytoplankton focusing on the distribution and production of Planktothrix rubescens.
    Hingsamer P; Peeters F; Hofmann H
    PLoS One; 2014; 9(8):e104359. PubMed ID: 25102279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light conditions affect the measurement of oceanic bacterial production via leucine uptake.
    Morán XA; Massana R; Gasol JM
    Appl Environ Microbiol; 2001 Sep; 67(9):3795-801. PubMed ID: 11525969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of measured growth rates with those calculated from rates of photosynthesis in Planktothrix spp. isolated from Blelham Tarn, English Lake District.
    Davis PA; Walsby AE
    New Phytol; 2002 Nov; 156(2):225-239. PubMed ID: 33873282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological stress and pathology in European whitefish (Coregonus lavaretus) induced by subchronic exposure to environmentally relevant densities of Planktothrix rubescens.
    Ernst B; Hoeger SJ; O'brien E; Dietrich DR
    Aquat Toxicol; 2007 Apr; 82(1):15-26. PubMed ID: 17320197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp.
    Kurmayer R; Christiansen G; Fastner J; Börner T
    Environ Microbiol; 2004 Aug; 6(8):831-41. PubMed ID: 15250885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental models of microcystin accumulation in Daphnia magna grazing on Planktothrix rubescens: implications for water management.
    Shams S; Cerasino L; Salmaso N; Dietrich DR
    Aquat Toxicol; 2014 Mar; 148():9-15. PubMed ID: 24440453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake.
    Salcher MM; Posch T; Pernthaler J
    ISME J; 2013 May; 7(5):896-907. PubMed ID: 23235289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans.
    Kasalický V; Zeng Y; Piwosz K; Šimek K; Kratochvilová H; Koblížek M
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29030444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allelopathic growth inhibition by the toxic, bloom-forming cyanobacterium Planktothrix rubescens.
    Oberhaus L; Briand JF; Humbert JF
    FEMS Microbiol Ecol; 2008 Nov; 66(2):243-9. PubMed ID: 18752621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zürich.
    Bright DI; Walsby AE
    New Phytol; 2000 May; 146(2):301-316. PubMed ID: 33862979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Positively Buoyant
    Lürling M; Mucci M; Waajen G
    Toxins (Basel); 2020 Nov; 12(11):. PubMed ID: 33167347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid detection and quantification of the potentially toxic cyanobacterium Planktothrix rubescens by in-vivo fluorometry and flow cytometry.
    Weisse T; Bergkemper V
    Water Res; 2018 Jul; 138():234-240. PubMed ID: 29604575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.