These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 2207095)
21. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Mohr G; Caprara MG; Guo Q; Lambowitz AM Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484 [TBL] [Abstract][Full Text] [Related]
22. Analysis of the P7 region within the catalytic core of the Tetrahymena ribozyme by employing in vitro selection. Oe Y; Ikawa Y; Shiraishi H; Inoue T Nucleic Acids Symp Ser; 2000; (44):197-8. PubMed ID: 12903336 [TBL] [Abstract][Full Text] [Related]
23. Distinct sites of phosphorothioate substitution interfere with folding and splicing of the Anabaena group I intron. Lupták A; Doudna JA Nucleic Acids Res; 2004; 32(7):2272-80. PubMed ID: 15107495 [TBL] [Abstract][Full Text] [Related]
24. Dissecting and analyzing the secondary structure domains of group I introns through the use of chimeric intron constructs. Tanner NK; Sargueil B J Mol Biol; 1995 Oct; 252(5):583-95. PubMed ID: 7563076 [TBL] [Abstract][Full Text] [Related]
25. Comparison of pH dependencies of the Tetrahymena ribozyme reactions with RNA 2'-substituted and phosphorothioate substrates reveals a rate-limiting conformational step. Herschlag D; Khosla M Biochemistry; 1994 May; 33(17):5291-7. PubMed ID: 8172903 [TBL] [Abstract][Full Text] [Related]
26. Evaluating group I intron catalytic efficiency in mammalian cells. Long MB; Sullenger BA Mol Cell Biol; 1999 Oct; 19(10):6479-87. PubMed ID: 10490588 [TBL] [Abstract][Full Text] [Related]
27. Minimal catalytic domain of a group I self-splicing intron RNA. Ikawa Y; Shiraishi H; Inoue T Nat Struct Biol; 2000 Nov; 7(11):1032-5. PubMed ID: 11062558 [TBL] [Abstract][Full Text] [Related]
28. In vitro genetic analysis of the hinge region between helical elements P5-P4-P6 and P7-P3-P8 in the sunY group I self-splicing intron. Green R; Szostak JW J Mol Biol; 1994 Jan; 235(1):140-55. PubMed ID: 7507168 [TBL] [Abstract][Full Text] [Related]
29. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing. Mei R; Herschlag D Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540 [TBL] [Abstract][Full Text] [Related]
30. The P5 activator of a group IC ribozyme can replace the P7.1/7.2 activator of a group IA ribozyme. Ikawa Y; Sasaki K; Tominaga H; Inoue T J Biochem; 2003 May; 133(5):665-70. PubMed ID: 12801919 [TBL] [Abstract][Full Text] [Related]
31. A 3' splice site-binding sequence in the catalytic core of a group I intron. Burke JM; Esherick JS; Burfeind WR; King JL Nature; 1990 Mar; 344(6261):80-2. PubMed ID: 2406615 [TBL] [Abstract][Full Text] [Related]
32. Identification of phosphate groups important to self-splicing of the Tetrahymena rRNA intron as determined by phosphorothioate substitution. Waring RB Nucleic Acids Res; 1989 Dec; 17(24):10281-93. PubMed ID: 2690016 [TBL] [Abstract][Full Text] [Related]
33. Enhanced self-splicing of Physarum polycephalum intron 3 by a second group I intron. Rocheleau GA; Woodson SA RNA; 1995 Apr; 1(2):183-93. PubMed ID: 7585248 [TBL] [Abstract][Full Text] [Related]
34. Self-splicing of group I introns. Cech TR Annu Rev Biochem; 1990; 59():543-68. PubMed ID: 2197983 [No Abstract] [Full Text] [Related]
35. Crystals by design: a strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron. Golden BL; Podell ER; Gooding AR; Cech TR J Mol Biol; 1997 Aug; 270(5):711-23. PubMed ID: 9245599 [TBL] [Abstract][Full Text] [Related]
36. Role of a conserved J8/7 X P4 base-triple in the Tetrahymena ribozyme. Ohki Y; Ikawa Y; Shiraishi H; Inoue T J Biochem; 2002 Nov; 132(5):713-8. PubMed ID: 12417020 [TBL] [Abstract][Full Text] [Related]
37. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection. Saldanha R; Ellington A; Lambowitz AM J Mol Biol; 1996 Aug; 261(1):23-42. PubMed ID: 8760500 [TBL] [Abstract][Full Text] [Related]
38. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction. Oe Y; Ikawa Y; Shiraishi H; Inoue T Biochem Biophys Res Commun; 2001 Jun; 284(4):948-54. PubMed ID: 11409885 [TBL] [Abstract][Full Text] [Related]
39. A base triple in the Tetrahymena group I core affects the reaction equilibrium via a threshold effect. Karbstein K; Tang KH; Herschlag D RNA; 2004 Nov; 10(11):1730-9. PubMed ID: 15496521 [TBL] [Abstract][Full Text] [Related]
40. Site-directed mutagenesis of core sequence elements 9R', 9L, 9R, and 2 in self-splicing Tetrahymena pre-rRNA. Williamson CL; Tierney WM; Kerker BJ; Burke JM J Biol Chem; 1987 Oct; 262(30):14672-82. PubMed ID: 3667597 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]