BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22071286)

  • 1. The potential of biodetoxification activity as a probiotic property of Lactobacillus reuteri.
    van Niel EW; Larsson CU; Lohmeier-Vogel EM; Rådström P
    Int J Food Microbiol; 2012 Jan; 152(3):206-10. PubMed ID: 22071286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains.
    Burgé G; Saulou-Bérion C; Moussa M; Allais F; Athes V; Spinnler HE
    J Microbiol; 2015 Oct; 53(10):702-10. PubMed ID: 26428921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis.
    Arsköld E; Lohmeier-Vogel E; Cao R; Roos S; Rådström P; van Niel EW
    J Bacteriol; 2008 Jan; 190(1):206-12. PubMed ID: 17965151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory.
    Kristjansdottir T; Bosma EF; Branco Dos Santos F; Özdemir E; Herrgård MJ; França L; Ferreira B; Nielsen AT; Gudmundsson S
    Microb Cell Fact; 2019 Oct; 18(1):186. PubMed ID: 31665018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased mannitol production in Lactobacillus reuteri ATCC 55730 production strain with a modified 6-phosphofructo-1-kinase.
    Papagianni M; Legiša M
    J Biotechnol; 2014 Jul; 181():20-6. PubMed ID: 24742994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism.
    Chen L; Bromberger PD; Nieuwenhuiys G; Hatti-Kaul R
    PLoS One; 2016; 11(12):e0168107. PubMed ID: 28030590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-scale insights into the metabolic versatility of Limosilactobacillus reuteri.
    Luo H; Li P; Wang H; Roos S; Ji B; Nielsen J
    BMC Biotechnol; 2021 Jul; 21(1):46. PubMed ID: 34330235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genes Involved in Galactooligosaccharide Metabolism in Lactobacillus reuteri and Their Ecological Role in the Gastrointestinal Tract.
    Rattanaprasert M; van Pijkeren JP; Ramer-Tait AE; Quintero M; Kok CR; Walter J; Hutkins RW
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31519661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodetoxification of fungal mycotoxins zearalenone by engineered probiotic bacterium Lactobacillus reuteri with surface-displayed lactonohydrolase.
    Liu F; Malaphan W; Xing F; Yu B
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8813-8824. PubMed ID: 31628520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of low pH on protein expression by the probiotic bacterium Lactobacillus reuteri.
    Lee K; Lee HG; Pi K; Choi YJ
    Proteomics; 2008 Apr; 8(8):1624-30. PubMed ID: 18351691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH.
    Moon J; Liu ZL
    Enzyme Microb Technol; 2012 Feb; 50(2):115-20. PubMed ID: 22226197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Ma M; Wang X; Zhang X; Zhao X
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8411-25. PubMed ID: 23912116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase.
    Ask M; Bettiga M; Duraiswamy VR; Olsson L
    Biotechnol Biofuels; 2013 Dec; 6(1):181. PubMed ID: 24341320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens.
    Spinler JK; Taweechotipatr M; Rognerud CL; Ou CN; Tumwasorn S; Versalovic J
    Anaerobe; 2008 Jun; 14(3):166-71. PubMed ID: 18396068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae.
    Almeida JR; Röder A; Modig T; Laadan B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):939-45. PubMed ID: 18330568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of transient acid stress on the proteome of intestinal probiotic Lactobacillus reuteri.
    Lee K; Pi K
    Biochemistry (Mosc); 2010 Apr; 75(4):460-5. PubMed ID: 20618135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    Liu ZL; Slininger PJ; Dien BS; Berhow MA; Kurtzman CP; Gorsich SW
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol.
    Dishisha T; Pereyra LP; Pyo SH; Britton RA; Hatti-Kaul R
    Microb Cell Fact; 2014 May; 13():76. PubMed ID: 24886501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol.
    Luo LH; Seo JW; Baek JO; Oh BR; Heo SY; Hong WK; Kim DH; Kim CH
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):697-703. PubMed ID: 20890600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.