BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22071325)

  • 1. Transformation of arsenic in offshore sediment under the impact of anaerobic microbial activities.
    Xu L; Zhao Z; Wang S; Pan R; Jia Y
    Water Res; 2011 Dec; 45(20):6781-8. PubMed ID: 22071325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities.
    Xu L; Wu X; Wang S; Yuan Z; Xiao F; Yang M; Jia Y
    J Hazard Mater; 2016 Jan; 301():538-46. PubMed ID: 26434533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments.
    Islam FS; Gault AG; Boothman C; Polya DA; Charnock JM; Chatterjee D; Lloyd JR
    Nature; 2004 Jul; 430(6995):68-71. PubMed ID: 15229598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of microbial sulfidogenesis on the stability of As-Fe coprecipitate with low Fe/As molar ratio under anaerobic conditions.
    Wang S; He XY; Pan R; Xu L; Wang X; Jia Y
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7267-77. PubMed ID: 26676545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system.
    Akerman NH; Price RE; Pichler T; Amend JP
    Geobiology; 2011 Sep; 9(5):436-45. PubMed ID: 21884364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh.
    Selim Reza AH; Jean JS; Yang HJ; Lee MK; Woodall B; Liu CC; Lee JF; Luo SD
    Water Res; 2010 Mar; 44(6):2021-37. PubMed ID: 20053416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur K-edge XANES and acid volatile sulfide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors.
    Shakeri Yekta S; Gustavsson J; Svensson BH; Skyllberg U
    Talanta; 2012 Jan; 89():470-7. PubMed ID: 22284519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the redox dynamics on microbial-mediated As transformation coupled with Fe and S in flow-through sediment columns.
    Moon HS; Kim BA; Hyun SP; Lee YH; Shin D
    J Hazard Mater; 2017 May; 329():280-289. PubMed ID: 28183017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic.
    Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z
    Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China.
    Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G
    J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.
    Hatayama M; Sato T; Shinoda K; Inoue C
    J Biosci Bioeng; 2011 Mar; 111(3):326-32. PubMed ID: 21185228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial transformations of arsenic: mobilization from glauconitic sediments to water.
    Mumford AC; Barringer JL; Benzel WM; Reilly PA; Young LY
    Water Res; 2012 Jun; 46(9):2859-68. PubMed ID: 22494492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microbial arsenic cycle in a salt-saturated, extreme environment.
    Oremland RS; Kulp TR; Blum JS; Hoeft SE; Baesman S; Miller LG; Stolz JF
    Science; 2005 May; 308(5726):1305-8. PubMed ID: 15919992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium.
    Nguyen HD; Cao B; Mishra B; Boyanov MI; Kemner KM; Fredrickson JK; Beyenal H
    Water Res; 2012 Jan; 46(1):227-34. PubMed ID: 22078229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG; Wilkin RT
    J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic biotransformation in solid waste residue: comparison of contributions from bacteria with arsenate and iron reducing pathways.
    Tian H; Shi Q; Jing C
    Environ Sci Technol; 2015 Feb; 49(4):2140-6. PubMed ID: 25635348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential.
    Wildung RE; Li SW; Murray CJ; Krupka KM; Xie Y; Hess NJ; Roden EE
    FEMS Microbiol Ecol; 2004 Jul; 49(1):151-62. PubMed ID: 19712393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy.
    Niazi NK; Singh B; Shah P
    Environ Sci Technol; 2011 Sep; 45(17):7135-42. PubMed ID: 21797214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.