These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 22071358)

  • 1. Lipid rafts: a signalling platform linking lipoprotein metabolism to atherogenesis.
    Lemaire-Ewing S; Lagrost L; Néel D
    Atherosclerosis; 2012 Apr; 221(2):303-10. PubMed ID: 22071358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microdomains, Inflammation, and Atherosclerosis.
    Sorci-Thomas MG; Thomas MJ
    Circ Res; 2016 Feb; 118(4):679-91. PubMed ID: 26892966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities.
    Camont L; Lhomme M; Rached F; Le Goff W; Nègre-Salvayre A; Salvayre R; Calzada C; Lagarde M; Chapman MJ; Kontush A
    Arterioscler Thromb Vasc Biol; 2013 Dec; 33(12):2715-23. PubMed ID: 24092747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterium tuberculosis lipoprotein-induced association of TLR2 with protein kinase C zeta in lipid rafts contributes to reactive oxygen species-dependent inflammatory signalling in macrophages.
    Shin DM; Yang CS; Lee JY; Lee SJ; Choi HH; Lee HM; Yuk JM; Harding CV; Jo EK
    Cell Microbiol; 2008 Sep; 10(9):1893-905. PubMed ID: 18503635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fas signaling induces raft coalescence that is blocked by cholesterol depletion in human RPE cells undergoing apoptosis.
    Lincoln JE; Boling M; Parikh AN; Yeh Y; Gilchrist DG; Morse LS
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2172-8. PubMed ID: 16639029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atherosclerotic risk factors in cardiovascular disease.
    LaRosa JC
    J Reprod Med; 1986 Sep; 31(9 Suppl):906-12. PubMed ID: 3772910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular endothelium in atherosclerosis.
    Sima AV; Stancu CS; Simionescu M
    Cell Tissue Res; 2009 Jan; 335(1):191-203. PubMed ID: 18797930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol in the Cell Membrane-An Emerging Player in Atherogenesis.
    Paukner K; Králová Lesná I; Poledne R
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability.
    Chistiakov DA; Orekhov AN; Bobryshev YV
    Acta Physiol (Oxf); 2015 Mar; 213(3):539-53. PubMed ID: 25515699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of the kappa opioid receptor in lipid rafts.
    Xu W; Yoon SI; Huang P; Wang Y; Chen C; Chong PL; Liu-Chen LY
    J Pharmacol Exp Ther; 2006 Jun; 317(3):1295-306. PubMed ID: 16505160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 7-Dehydrocholesterol (7-DHC), But Not Cholesterol, Causes Suppression of Canonical TGF-β Signaling and Is Likely Involved in the Development of Atherosclerotic Cardiovascular Disease (ASCVD).
    Huang SS; Liu IH; Chen CL; Chang JM; Johnson FE; Huang JS
    J Cell Biochem; 2017 Jun; 118(6):1387-1400. PubMed ID: 27862220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxysterols: Influence on plasma membrane rafts microdomains and development of ocular diseases.
    Filomenko R; Fourgeux C; Bretillon L; Gambert-Nicot S
    Steroids; 2015 Jul; 99(Pt B):259-65. PubMed ID: 25683893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemokines in atherosclerosis: proceedings resumed.
    Zernecke A; Weber C
    Arterioscler Thromb Vasc Biol; 2014 Apr; 34(4):742-50. PubMed ID: 24436368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inner side of T cell lipid rafts.
    Gri G; Molon B; Manes S; Pozzan T; Viola A
    Immunol Lett; 2004 Jul; 94(3):247-52. PubMed ID: 15275973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inflammation-related gene expression by lipid oxidation-derived products in the progression of atherosclerosis.
    Leonarduzzi G; Gamba P; Gargiulo S; Biasi F; Poli G
    Free Radic Biol Med; 2012 Jan; 52(1):19-34. PubMed ID: 22037514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential dependence of the ingestion of necrotic cells and TNF-alpha / IL-1beta production by murine macrophages on lipid rafts.
    Acosta-Pérez G; Maximina Bertha Moreno-Altamirano M; Rodríguez-Luna G; Javier Sánchez-Garcia F
    Scand J Immunol; 2008 Oct; 68(4):423-9. PubMed ID: 18782272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective cholesterol dynamics between lipoproteins and caveolae/lipid rafts.
    Storey SM; Gallegos AM; Atshaves BP; McIntosh AL; Martin GG; Parr RD; Landrock KK; Kier AB; Ball JM; Schroeder F
    Biochemistry; 2007 Dec; 46(48):13891-906. PubMed ID: 17990854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-chain n-3 fatty acids in lipid rafts: implications for anti-inflammatory effects.
    Garattini S
    J Cardiovasc Med (Hagerstown); 2007 Sep; 8 Suppl 1():S30-3. PubMed ID: 17876195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-density lipoprotein and 4F peptide reduce systemic inflammation by modulating intestinal oxidized lipid metabolism: novel hypotheses and review of literature.
    Navab M; Reddy ST; Van Lenten BJ; Buga GM; Hough G; Wagner AC; Fogelman AM
    Arterioscler Thromb Vasc Biol; 2012 Nov; 32(11):2553-60. PubMed ID: 23077141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of lipid rafts from B lymphocytes.
    Cherukuri A; Tzeng SJ; Gidwani A; Sohn HW; Tolar P; Snyder MD; Pierce SK
    Methods Mol Biol; 2004; 271():213-24. PubMed ID: 15146123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.