BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 22071430)

  • 1. Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion.
    Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):255-62. PubMed ID: 22071430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfiguration of the upper extremity relative to the pushrim affects load distribution during wheelchair propulsion.
    Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS
    Med Eng Phys; 2013 Aug; 35(8):1141-9. PubMed ID: 23352613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces.
    Dubowsky SR; Rasmussen J; Sisto SA; Langrana NA
    J Biomech; 2008 Oct; 41(14):2981-8. PubMed ID: 18804763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is effective force application in handrim wheelchair propulsion also efficient?
    Bregman DJ; van Drongelen S; Veeger HE
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):13-9. PubMed ID: 18990473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of resultant force at the pushrim on shoulder kinetics during manual wheelchair propulsion: a simulation study.
    Desroches G; Aissaoui R; Bourbonnais D
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1423-31. PubMed ID: 18390334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper limb joint dynamics during manual wheelchair propulsion.
    Desroches G; Dumas R; Pradon D; Vaslin P; Lepoutre FX; Chèze L
    Clin Biomech (Bristol, Avon); 2010 May; 25(4):299-306. PubMed ID: 20106573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shoulder load during handcycling at different incline and speed conditions.
    Arnet U; van Drongelen S; van der Woude LH; Veeger DH
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):1-6. PubMed ID: 21831491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upper extremity kinematics and kinetics during the performance of a stationary wheelie in manual wheelchair users with a spinal cord injury.
    Lalumiere M; Gagnon DH; Routhier F; Bouyer L; Desroches G
    J Appl Biomech; 2014 Aug; 30(4):574-80. PubMed ID: 24610281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shoulder joint kinetics and pathology in manual wheelchair users.
    Mercer JL; Boninger M; Koontz A; Ren D; Dyson-Hudson T; Cooper R
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):781-9. PubMed ID: 16808992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper limb joint kinetics during manual wheelchair propulsion in patients with different levels of spinal cord injury.
    Gil-Agudo A; Del Ama-Espinosa A; Pérez-Rizo E; Pérez-Nombela S; Pablo Rodríguez-Rodríguez L
    J Biomech; 2010 Sep; 43(13):2508-15. PubMed ID: 20541760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scapular kinematics during transfers in manual wheelchair users with and without shoulder impingement.
    Finley MA; McQuade KJ; Rodgers MM
    Clin Biomech (Bristol, Avon); 2005 Jan; 20(1):32-40. PubMed ID: 15567534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between resultant force at the pushrim and the net shoulder joint moments during manual wheelchair propulsion in elderly persons.
    Desroches G; Aissaoui R; Bourbonnais D
    Arch Phys Med Rehabil; 2008 Jun; 89(6):1155-61. PubMed ID: 18503814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shoulder load during synchronous handcycling and handrim wheelchair propulsion in persons with paraplegia.
    Arnet U; van Drongelen S; Scheel-Sailer A; van der Woude LH; Veeger DH
    J Rehabil Med; 2012 Mar; 44(3):222-8. PubMed ID: 22367531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of verbal training and visual feedback on manual wheelchair propulsion.
    DeGroot KK; Hollingsworth HH; Morgan KA; Morris CL; Gray DB
    Disabil Rehabil Assist Technol; 2009 Mar; 4(2):86-94. PubMed ID: 19253097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
    Lin HT; Su FC; Wu HW; An KN
    Proc Inst Mech Eng H; 2004; 218(4):213-21. PubMed ID: 15376723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shoulder demands in manual wheelchair users across a spectrum of activities.
    Morrow MM; Hurd WJ; Kaufman KR; An KN
    J Electromyogr Kinesiol; 2010 Feb; 20(1):61-7. PubMed ID: 19269194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
    Collinger JL; Boninger ML; Koontz AM; Price R; Sisto SA; Tolerico ML; Cooper RA
    Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study.
    Rankin JW; Kwarciak AM; Richter WM; Neptune RR
    Clin Biomech (Bristol, Avon); 2012 Nov; 27(9):879-86. PubMed ID: 22835860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion.
    Kloosterman MG; Eising H; Schaake L; Buurke JH; Rietman JS
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):428-35. PubMed ID: 22209484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Load on the shoulder complex during wheelchair propulsion and weight relief lifting.
    van Drongelen S; van der Woude LH; Veeger HE
    Clin Biomech (Bristol, Avon); 2011 Jun; 26(5):452-7. PubMed ID: 21316822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.