BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22071693)

  • 1. Nuclear import of a lipid-modified transcription factor: mobilization of NFAT5 isoform a by osmotic stress.
    Eisenhaber B; Sammer M; Lua WH; Benetka W; Liew LL; Yu W; Lee HK; Koranda M; Eisenhaber F; Adhikari S
    Cell Cycle; 2011 Nov; 10(22):3897-911. PubMed ID: 22071693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Lipid-Anchored NAC Transcription Factor Is Translocated into the Nucleus and Activates
    Duan M; Zhang R; Zhu F; Zhang Z; Gou L; Wen J; Dong J; Wang T
    Plant Cell; 2017 Jul; 29(7):1748-1772. PubMed ID: 28684428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nuclear transportation routes of membrane-bound transcription factors.
    Liu Y; Li P; Fan L; Wu M
    Cell Commun Signal; 2018 Apr; 16(1):12. PubMed ID: 29615051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations that reduce its specific DNA binding inhibit high NaCl-induced nuclear localization of the osmoprotective transcription factor NFAT5.
    Izumi Y; Li J; Villers C; Hashimoto K; Burg MB; Ferraris JD
    Am J Physiol Cell Physiol; 2012 Nov; 303(10):C1061-9. PubMed ID: 22992674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of nucleocytoplasmic trafficking of transcription factor OREBP/TonEBP/NFAT5.
    Tong EH; Guo JJ; Huang AL; Liu H; Hu CD; Chung SS; Ko BC
    J Biol Chem; 2006 Aug; 281(33):23870-9. PubMed ID: 16782704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exclusion of NFAT5 from mitotic chromatin resets its nucleo-cytoplasmic distribution in interphase.
    Estrada-Gelonch A; Aramburu J; López-Rodríguez C
    PLoS One; 2009 Sep; 4(9):e7036. PubMed ID: 19750013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The osmoprotective function of the NFAT5 transcription factor in T cell development and activation.
    Trama J; Go WY; Ho SN
    J Immunol; 2002 Nov; 169(10):5477-88. PubMed ID: 12421923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NFAT5 induction and its role in hyperosmolar stressed human limbal epithelial cells.
    Lee JH; Kim M; Im YS; Choi W; Byeon SH; Lee HK
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):1827-35. PubMed ID: 18436816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable signal processing through modular control of transcription factor translocation.
    Hao N; Budnik BA; Gunawardena J; O'Shea EK
    Science; 2013 Jan; 339(6118):460-4. PubMed ID: 23349292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active nuclear import and export pathways regulate E2F-5 subcellular localization.
    Apostolova MD; Ivanova IA; Dagnino C; D'Souza SJ; Dagnino L
    J Biol Chem; 2002 Sep; 277(37):34471-9. PubMed ID: 12089160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular distribution of nuclear import-defective isoforms of the promyelocytic leukemia protein.
    Jul-Larsen A; Grudic A; Bjerkvig R; Bøe SO
    BMC Mol Biol; 2010 Nov; 11():89. PubMed ID: 21092142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SIRT1 contributes to aldose reductase expression through modulating NFAT5 under osmotic stress: In vitro and in silico insights.
    Timucin AC; Bodur C; Basaga H
    Cell Signal; 2015 Nov; 27(11):2160-72. PubMed ID: 26297866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear Respiratory Factor 2β (NRF-2β) recruits NRF-2α to the nucleus by binding to importin-α:β via an unusual monopartite-type nuclear localization signal.
    Hayashi R; Takeuchi N; Ueda T
    J Mol Biol; 2013 Sep; 425(18):3536-48. PubMed ID: 23856623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment.
    Go WY; Liu X; Roti MA; Liu F; Ho SN
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10673-8. PubMed ID: 15247420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide affinity analysis of proteins that bind to an unstructured NH2-terminal region of the osmoprotective transcription factor NFAT5.
    DuMond JF; Ramkissoon K; Zhang X; Izumi Y; Wang X; Eguchi K; Gao S; Mukoyama M; Burg MB; Ferraris JD
    Physiol Genomics; 2016 Apr; 48(4):290-305. PubMed ID: 26757802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane-bound transcription factors: regulated release by RIP or RUP.
    Hoppe T; Rape M; Jentsch S
    Curr Opin Cell Biol; 2001 Jun; 13(3):344-8. PubMed ID: 11343906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytokine-induced slowing of STAT3 nuclear import; faster basal trafficking of the STAT3β isoform.
    Ng IH; Bogoyevitch MA; Jans DA
    Traffic; 2014 Sep; 15(9):946-60. PubMed ID: 24903907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleoporin 88 (Nup88) is regulated by hypertonic stress in kidney cells to retain the transcription factor tonicity enhancer-binding protein (TonEBP) in the nucleus.
    Andres-Hernando A; Lanaspa MA; Rivard CJ; Berl T
    J Biol Chem; 2008 Sep; 283(36):25082-90. PubMed ID: 18606815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress.
    Ueno M; Shen WJ; Patel S; Greenberg AS; Azhar S; Kraemer FB
    J Lipid Res; 2013 Mar; 54(3):734-743. PubMed ID: 23233732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The core protein of hepatitis C virus is imported into the nucleus by transport receptor Kap123p but inhibits Kap121p-dependent nuclear import of yeast AP1-like transcription factor in yeast cells.
    Isoyama T; Kuge S; Nomoto A
    J Biol Chem; 2002 Oct; 277(42):39634-41. PubMed ID: 12167639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.