These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2207199)

  • 41. Simulation of sleep spindles and spike and wave discharges using a novel method for the calculation of field potentials in rats.
    Sargsyan A; Sitnikova E; Melkonyan A; Mkrtchian H; van Luijtelaar G
    J Neurosci Methods; 2007 Aug; 164(1):161-76. PubMed ID: 17531326
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model.
    Compte A; Sanchez-Vives MV; McCormick DA; Wang XJ
    J Neurophysiol; 2003 May; 89(5):2707-25. PubMed ID: 12612051
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A neural network model based on the analogy with the immune system.
    Hoffmann GW
    J Theor Biol; 1986 Sep; 122(1):33-67. PubMed ID: 3796008
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state.
    Strecker RE; Morairty S; Thakkar MM; Porkka-Heiskanen T; Basheer R; Dauphin LJ; Rainnie DG; Portas CM; Greene RW; McCarley RW
    Behav Brain Res; 2000 Nov; 115(2):183-204. PubMed ID: 11000420
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A potent non-monoaminergic paradoxical sleep inhibitory system: a reverse microdialysis and single-unit recording study.
    Crochet S; Onoe H; Sakai K
    Eur J Neurosci; 2006 Sep; 24(5):1404-12. PubMed ID: 16987225
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Linking dynamics of the inhibitory network to the input structure.
    Komarov M; Bazhenov M
    J Comput Neurosci; 2016 Dec; 41(3):367-391. PubMed ID: 27650865
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of hypnogenic vagal stimulation on thalamic neuronal activity in cats.
    Juhász G; Détári L; Kukorelli T
    Brain Res Bull; 1985 Nov; 15(5):437-41. PubMed ID: 4063837
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluctuations in spontaneous discharge of hippocampal theta cells during sleep-waking states and PCPA-induced insomnia.
    Mushiake H; Kodama T; Shima K; Yamamoto M; Nakahama H
    J Neurophysiol; 1988 Sep; 60(3):925-39. PubMed ID: 2971787
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake-sleep states.
    Sakai K; Crochet S
    Neuroscience; 2001; 104(4):1141-55. PubMed ID: 11457597
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stability analysis of asynchronous states in neuronal networks with conductance-based inhibition.
    Leibold C
    Phys Rev Lett; 2004 Nov; 93(20):208104. PubMed ID: 15600976
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Avian sleep homeostasis: convergent evolution of complex brains, cognition and sleep functions in mammals and birds.
    Rattenborg NC; Martinez-Gonzalez D; Lesku JA
    Neurosci Biobehav Rev; 2009 Mar; 33(3):253-70. PubMed ID: 18789355
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations.
    Steriade M; Timofeev I
    Neuron; 2003 Feb; 37(4):563-76. PubMed ID: 12597855
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep.
    Varin C; Luppi PH; Fort P
    Sleep; 2018 Jun; 41(6):. PubMed ID: 29618134
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms and models of REM sleep control.
    McCarley RW
    Arch Ital Biol; 2004 Jul; 142(4):429-67. PubMed ID: 15493547
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synaptic plasticity modulates autonomous transitions between waking and sleep states: insights from a Morris-Lecar model.
    Ciszak M; Bellesi M
    Chaos; 2011 Dec; 21(4):043119. PubMed ID: 22225356
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuronal network analysis based on arrival times of active-sleep specific inhibitory postsynaptic potentials in spinal cord motoneurons of the cat.
    Engelhardt JK; Chase MH
    Brain Res; 2001 Jul; 908(1):75-85. PubMed ID: 11457433
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Information encoding in an oscillatory network.
    Wang S; Zhou C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061910. PubMed ID: 19658527
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neural dynamics necessary and sufficient for transition into pre-sleep induced by EEG neurofeedback.
    Kinreich S; Podlipsky I; Jamshy S; Intrator N; Hendler T
    Neuroimage; 2014 Aug; 97():19-28. PubMed ID: 24768931
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Desynchronization of slow oscillations in the basal ganglia during natural sleep.
    Mizrahi-Kliger AD; Kaplan A; Israel Z; Bergman H
    Proc Natl Acad Sci U S A; 2018 May; 115(18):E4274-E4283. PubMed ID: 29666271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.