BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22072069)

  • 1. Genetic correlations and the evolution of photoperiodic time measurement within a local population of the pitcher-plant mosquito, Wyeomyia smithii.
    Bradshaw WE; Emerson KJ; Holzapfel CM
    Heredity (Edinb); 2012 May; 108(5):473-9. PubMed ID: 22072069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: can the seasonal timer evolve independently of the circadian clock?
    Bradshaw WE; Holzapfel CM; Mathias D
    Am Nat; 2006 Apr; 167(4):601-5. PubMed ID: 16671002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of photoperiodic time measurement is independent of the circadian clock in the pitcher-plant mosquito, Wyeomyia smithii.
    Emerson KJ; Dake SJ; Bradshaw WE; Holzapfel CM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Apr; 195(4):385-91. PubMed ID: 19190920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of an hourglass timer to the evolution of photoperiodic response in the pitcher-plant mosquito, Wyeomyia smithii.
    Bradshaw WE; Quebodeaux IM; Holzapfel CM
    Evolution; 2003 Oct; 57(10):2342-9. PubMed ID: 14628922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary divergence of circadian and photoperiodic phenotypes in the pitcher-plant mosquito, Wyeomyia smithii.
    Mathias D; Reed LK; Bradshaw WE; Holzapfel CM
    J Biol Rhythms; 2006 Apr; 21(2):132-9. PubMed ID: 16603677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary divergence of core and post-translational circadian clock genes in the pitcher-plant mosquito, Wyeomyia smithii.
    Tormey D; Colbourne JK; Mockaitis K; Choi JH; Lopez J; Burkhart J; Bradshaw W; Holzapfel C
    BMC Genomics; 2015 Oct; 16():754. PubMed ID: 26444857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrinsic light:dark cycles, rather than endogenous circadian cycles, affect the photoperiodic counter in the pitcher-plant mosquito, Wyeomyia smithii.
    Emerson KJ; Letaw AD; Bradshaw WE; Holzapfel CM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jul; 194(7):611-5. PubMed ID: 18427810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: adaptive response to the photic environment or correlated response to the seasonal environment?
    Bradshaw WE; Quebodeaux MC; Holzapfel CM
    Am Nat; 2003 May; 161(5):735-48. PubMed ID: 12858281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic shift in photoperiodic response correlated with global warming.
    Bradshaw WE; Holzapfel CM
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14509-11. PubMed ID: 11698659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hourglass and rhythmic components of photoperiodic time measurement in the pitcher plant mosquito, Wyeomyia smithii.
    Bradshaw WE; Holzapfel CM; Davison TE
    Oecologia; 1998 Dec; 117(4):486-495. PubMed ID: 28307673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhythmic components of photoperiodic time measurement in the pitcher-plant mosquito, Wyeomyia smithii.
    Wegis MC; Bradshaw WE; Davison TE; Holzapfel CM
    Oecologia; 1997 Mar; 110(1):32-39. PubMed ID: 28307466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative trait loci associated with photoperiodic response and stage of diapause in the pitcher-plant mosquito, Wyeomyia smithii.
    Mathias D; Jacky L; Bradshaw WE; Holzapfel CM
    Genetics; 2007 May; 176(1):391-402. PubMed ID: 17339202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural Variation and Genetics of Photoperiodism in Wyeomyia smithii.
    Bradshaw WE; Holzapfel CM
    Adv Genet; 2017; 99():39-71. PubMed ID: 29050554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geographic and developmental variation in expression of the circadian rhythm gene, timeless, in the pitcher-plant mosquito, Wyeomyia smithii.
    Mathias D; Jacky L; Bradshaw WE; Holzapfel CM
    J Insect Physiol; 2005 Jun; 51(6):661-7. PubMed ID: 15979087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary divergence of the genetic architecture underlying photoperiodism in the pitcher-plant mosquito, Wyeomyia smithii.
    Lair KP; Bradshaw WE; Holzapfel CM
    Genetics; 1997 Dec; 147(4):1873-83. PubMed ID: 9409843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epistasis and the genetic divergence of photoperiodism between populations of the pitcher-plant mosquito, Wyeomyia smithii.
    Hard JJ; Bradshaw WE; Holzapfel CM
    Genetics; 1992 Jun; 131(2):389-96. PubMed ID: 1353737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary links between circadian clocks and photoperiodic diapause in insects.
    Meuti ME; Denlinger DL
    Integr Comp Biol; 2013 Jul; 53(1):131-43. PubMed ID: 23615363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epistasis underlying a fitness trait within a natural population of the pitcher-plant mosquito, Wyeomyia smithii.
    Bradshaw WE; Haggerty BP; Holzapfel CM
    Genetics; 2005 Jan; 169(1):485-8. PubMed ID: 15466431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly.
    Iiams SE; Lugena AB; Zhang Y; Hayden AN; Merlin C
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25214-25221. PubMed ID: 31767753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Footprints in time: comparative quantitative trait loci mapping of the pitcher-plant mosquito, Wyeomyia smithii.
    Bradshaw WE; Emerson KJ; Catchen JM; Cresko WA; Holzapfel CM
    Proc Biol Sci; 2012 Nov; 279(1747):4551-8. PubMed ID: 23015622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.