BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 22072143)

  • 41. Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity.
    Benoit I; Danchin EG; Bleichrodt RJ; de Vries RP
    Biotechnol Lett; 2008 Mar; 30(3):387-96. PubMed ID: 17973091
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Towards the development of systems for high-yield production of microbial lipases.
    Turki S
    Biotechnol Lett; 2013 Oct; 35(10):1551-60. PubMed ID: 23743957
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Olive-mill wastewaters: a promising substrate for microbial lipase production.
    D'Annibale A; Sermanni GG; Federici F; Petruccioli M
    Bioresour Technol; 2006 Oct; 97(15):1828-33. PubMed ID: 16236495
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aspergillus niger lipase: Heterologous expression in Pichia pastoris, molecular modeling prediction and the importance of the hinge domains at both sides of the lid domain to interfacial activation.
    Shu Z; Duan M; Yang J; Xu L; Yan Y
    Biotechnol Prog; 2009; 25(2):409-16. PubMed ID: 19248178
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous lipase production and immobilization: morphology and physiology study of Penicillium simplicissimum in submerged and solid-state fermentation with polypropylene as an inert support.
    Greco-Duarte J; de Almeida FP; de Godoy MG; Lins U; Freire DMG; Gutarra MLE
    Enzyme Microb Technol; 2023 Mar; 164():110173. PubMed ID: 36529062
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome mining of fungal lipid-degrading enzymes for industrial applications.
    Vorapreeda T; Thammarongtham C; Cheevadhanarak S; Laoteng K
    Microbiology (Reading); 2015 Aug; 161(8):1613-1626. PubMed ID: 26271808
    [TBL] [Abstract][Full Text] [Related]  

  • 47. lip2, a novel lipase gene cloned from Aspergillus niger exhibits enzymatic characteristics distinct from its previously identified family member.
    Yang J; Sun J; Yan Y
    Biotechnol Lett; 2010 Jul; 32(7):951-6. PubMed ID: 20213520
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment.
    Basheer SM; Chellappan S; Beena PS; Sukumaran RK; Elyas KK; Chandrasekaran M
    N Biotechnol; 2011 Oct; 28(6):627-38. PubMed ID: 21549226
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rational strategy for the production of new crude lipases from Candida rugosa.
    de María PD; Sánchez-Montero JM; Alcántara AR; Valero F; Sinisterra JV
    Biotechnol Lett; 2005 Apr; 27(7):499-503. PubMed ID: 15928857
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential.
    Esteves AC; Saraiva M; Correia A; Alves A
    Can J Microbiol; 2014 May; 60(5):332-42. PubMed ID: 24802941
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biochemical characterization, cloning, and molecular modelling of chicken pancreatic lipase.
    Fendri A; Frikha F; Mosbah H; Miled N; Zouari N; Bacha AB; Sayari A; Mejdoub H; Gargouri Y
    Arch Biochem Biophys; 2006 Jul; 451(2):149-59. PubMed ID: 16780787
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adding value to the oil cake as a waste from oil processing industry: production of lipase and protease by Candida utilis in solid state fermentation.
    Moftah OA; Grbavčić S; Zuža M; Luković N; Bezbradica D; Knežević-Jugović Z
    Appl Biochem Biotechnol; 2012 Jan; 166(2):348-64. PubMed ID: 22081325
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of mesophilic fungal amylases produced by solid-state fermentation in the cold hydrolysis of raw babassu cake starch.
    de Castro AM; de Andréa TV; Castilho Ldos R; Freire DM
    Appl Biochem Biotechnol; 2010 Nov; 162(6):1612-25. PubMed ID: 20306155
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation.
    Bussamara R; Fuentefria AM; de Oliveira ES; Broetto L; Simcikova M; Valente P; Schrank A; Vainstein MH
    Bioresour Technol; 2010 Jan; 101(1):268-75. PubMed ID: 19700311
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of batch and continuous processes on biodiesel production in a packed-bed reactor by a mixture of immobilized Candida rugosa and Rhizopus oryzae lipases.
    Lee JH; Kim SB; Park C; Tae B; Han SO; Kim SW
    Appl Biochem Biotechnol; 2010 May; 161(1-8):365-71. PubMed ID: 19898962
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Understanding Candida rugosa lipases: an overview.
    Domínguez de María P; Sánchez-Montero JM; Sinisterra JV; Alcántara AR
    Biotechnol Adv; 2006; 24(2):180-96. PubMed ID: 16288844
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cold active microbial lipases: some hot issues and recent developments.
    Joseph B; Ramteke PW; Thomas G
    Biotechnol Adv; 2008; 26(5):457-70. PubMed ID: 18571355
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Extracellular lipases of the fungus Rhizopus microsporus UzLT-1].
    Davranov K; Diiarov Zh; Rizaeva M
    Prikl Biokhim Mikrobiol; 1978; 14(3):389-98. PubMed ID: 674116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Industrial application of lipases].
    Bancerz R
    Postepy Biochem; 2017; 63(4):335-341. PubMed ID: 29374434
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacterial lipases: A review on purification and characterization.
    Javed S; Azeem F; Hussain S; Rasul I; Siddique MH; Riaz M; Afzal M; Kouser A; Nadeem H
    Prog Biophys Mol Biol; 2018 Jan; 132():23-34. PubMed ID: 28774751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.