These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 22072298)

  • 41. Temperature and trapping characterization of an acoustic trap with miniaturized integrated transducers--towards in-trap temperature regulation.
    Johansson L; Evander M; Lilliehorn T; Almqvist M; Nilsson J; Laurell T; Johansson S
    Ultrasonics; 2013 Jul; 53(5):1020-32. PubMed ID: 23497805
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On-chip microfluidic sorting with fluorescence spectrum detection and multiway separation.
    Sugino H; Ozaki K; Shirasaki Y; Arakawa T; Shoji S; Funatsu T
    Lab Chip; 2009 May; 9(9):1254-60. PubMed ID: 19370245
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automatic particle detection and sorting in an electrokinetic microfluidic chip.
    Song Y; Peng R; Wang J; Pan X; Sun Y; Li D
    Electrophoresis; 2013 Mar; 34(5):684-90. PubMed ID: 23172422
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced surface acoustic wave cell sorting by 3D microfluidic-chip design.
    Ung WL; Mutafopulos K; Spink P; Rambach RW; Franke T; Weitz DA
    Lab Chip; 2017 Nov; 17(23):4059-4069. PubMed ID: 28994439
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acoustofluidics 19: ultrasonic microrobotics in cavities: devices and numerical simulation.
    Dual J; Hahn P; Leibacher I; Möller D; Schwarz T; Wang J
    Lab Chip; 2012 Oct; 12(20):4010-21. PubMed ID: 22971740
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting.
    Yao B; Luo GA; Feng X; Wang W; Chen LX; Wang YM
    Lab Chip; 2004 Dec; 4(6):603-7. PubMed ID: 15570372
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Continuous separation of particles using a microfluidic device equipped with flow rate control valves.
    Sai Y; Yamada M; Yasuda M; Seki M
    J Chromatogr A; 2006 Sep; 1127(1-2):214-20. PubMed ID: 16890945
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dancing with the Cells: Acoustic Microflows Generated by Oscillating Cells.
    Salari A; Appak-Baskoy S; Ezzo M; Hinz B; Kolios MC; Tsai SSH
    Small; 2020 Mar; 16(9):e1903788. PubMed ID: 31829522
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Miniaturized Lab-on-a-Disc (miniLOAD).
    Glass NR; Shilton RJ; Chan PP; Friend JR; Yeo LY
    Small; 2012 Jun; 8(12):1881-8. PubMed ID: 22488691
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A microfluidic platform for 3-dimensional cell culture and cell-based assays.
    Kim MS; Yeon JH; Park JK
    Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acoustic actuated fluorescence activated sorting of microparticles.
    Jakobsson O; Grenvall C; Nordin M; Evander M; Laurell T
    Lab Chip; 2014 Jun; 14(11):1943-50. PubMed ID: 24763517
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acoustic programming in step-split-flow lateral-transport thin fractionation.
    Ratier C; Hoyos M
    Anal Chem; 2010 Feb; 82(4):1318-25. PubMed ID: 20099837
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading.
    Wu Z; Hjort K; Wicher G; Fex Svenningsen A
    Biomed Microdevices; 2008 Oct; 10(5):631-8. PubMed ID: 18461460
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A numerical and experimental study of acoustic micromixing in 3D microchannels for lab-on-a-chip devices.
    Catarino SO; Pinto VC; Sousa PJ; Lima R; Miranda JM; Minas G
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5660-5663. PubMed ID: 28269539
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform.
    Abi-Samra K; Hanson R; Madou M; Gorkin RA
    Lab Chip; 2011 Feb; 11(4):723-6. PubMed ID: 21103528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A simple microfluidic method to select, isolate, and manipulate single-cells in mechanical and biochemical assays.
    Gabriele S; Versaevel M; Preira P; Théodoly O
    Lab Chip; 2010 Jun; 10(11):1459-67. PubMed ID: 20480111
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acoustic particle filter with adjustable effective pore size for automated sample preparation.
    Jung B; Fisher K; Ness KD; Rose KA; Mariella RP
    Anal Chem; 2008 Nov; 80(22):8447-52. PubMed ID: 18847218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.