These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22072388)

  • 1. Decompositions of large-scale biological systems based on dynamical properties.
    Soranzo N; Ramezani F; Iacono G; Altafini C
    Bioinformatics; 2012 Jan; 28(1):76-83. PubMed ID: 22072388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algorithmic and complexity results for decompositions of biological networks into monotone subsystems.
    DasGupta B; Enciso GA; Sontag E; Zhang Y
    Biosystems; 2007; 90(1):161-78. PubMed ID: 17188805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic properties of network motifs contribute to biological network organization.
    Prill RJ; Iglesias PA; Levchenko A
    PLoS Biol; 2005 Nov; 3(11):e343. PubMed ID: 16187794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing chemical organizations in biological networks.
    Centler F; Kaleta C; di Fenizio PS; Dittrich P
    Bioinformatics; 2008 Jul; 24(14):1611-8. PubMed ID: 18480100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FCDECOMP: decomposition of metabolic networks based on flux coupling relations.
    Rezvan A; Marashi SA; Eslahchi C
    J Bioinform Comput Biol; 2014 Oct; 12(5):1450028. PubMed ID: 25362842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On flux coupling analysis of metabolic subsystems.
    Marashi SA; David L; Bockmayr A
    J Theor Biol; 2012 Jun; 302():62-9. PubMed ID: 22406036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy.
    Penas DR; González P; Egea JA; Doallo R; Banga JR
    BMC Bioinformatics; 2017 Jan; 18(1):52. PubMed ID: 28109249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathway discovery in metabolic networks by subgraph extraction.
    Faust K; Dupont P; Callut J; van Helden J
    Bioinformatics; 2010 May; 26(9):1211-8. PubMed ID: 20228128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.
    Kentzoglanakis K; Poole M
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):358-71. PubMed ID: 21576756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative network alignment reveals large regions of global network similarity in yeast and human.
    Kuchaiev O; Przulj N
    Bioinformatics; 2011 May; 27(10):1390-6. PubMed ID: 21414992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring metabolic pathways in genome-scale networks via generating flux modes.
    Rezola A; de Figueiredo LF; Brock M; Pey J; Podhorski A; Wittmann C; Schuster S; Bockmayr A; Planes FJ
    Bioinformatics; 2011 Feb; 27(4):534-40. PubMed ID: 21149278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.
    Huang JY; Huang CW; Kao KC; Lai PY
    Gene; 2013 Apr; 518(1):35-41. PubMed ID: 23274654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical coordinate systems for understanding complexity and its evolution, with applications to genetic regulatory networks.
    Egri-Nagy A; Nehaniv CL
    Artif Life; 2008; 14(3):299-312. PubMed ID: 18489252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical analysis of piecewise affine models of gene regulatory networks.
    Tournier L; Gouzé JL
    Theory Biosci; 2008 Jun; 127(2):125-34. PubMed ID: 18437441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic identification of statistically significant network measures.
    Ziv E; Koytcheff R; Middendorf M; Wiggins C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016110. PubMed ID: 15697661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of different approaches for identifying subnetworks in metabolic networks.
    Rezvan A; Eslahchi C
    J Bioinform Comput Biol; 2017 Dec; 15(6):1750025. PubMed ID: 29187029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximity of intracellular regulatory networks to monotone systems.
    Ma'ayan A; Lipshtat A; Iyengar R; Sontag ED
    IET Syst Biol; 2008 May; 2(3):103-12. PubMed ID: 18537452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic detection of subsystem/pathway variants in genome analysis.
    Ye Y; Osterman A; Overbeek R; Godzik A
    Bioinformatics; 2005 Jun; 21 Suppl 1():i478-86. PubMed ID: 15961494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data.
    Kümmel A; Panke S; Heinemann M
    Mol Syst Biol; 2006; 2():2006.0034. PubMed ID: 16788595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Closed-loop learning control of bio-networks.
    Ku J; Feng XJ; Rabitz H
    J Comput Biol; 2004; 11(4):642-59. PubMed ID: 15579236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.