These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 22072517)

  • 1. Blind, one-eyed, or eagle-eyed? pKa calculations during blind predictions with staphylococcal nuclease.
    Czodrowski P
    Proteins; 2011 Dec; 79(12):3299-305. PubMed ID: 22072517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein electrostatics and pKa blind predictions; contribution from empirical predictions of internal ionizable residues.
    Olsson MH
    Proteins; 2011 Dec; 79(12):3333-45. PubMed ID: 22072518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the Gaussian dielectric boundary in Zap to the prediction of protein pKa values.
    Word JM; Nicholls A
    Proteins; 2011 Dec; 79(12):3400-9. PubMed ID: 21661059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring conformational changes coupled to ionization states using a hybrid Rosetta-MCCE protocol.
    Song Y
    Proteins; 2011 Dec; 79(12):3356-63. PubMed ID: 22072519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pKa predictions with a coupled finite difference Poisson-Boltzmann and Debye-Hückel method.
    Warwicker J
    Proteins; 2011 Dec; 79(12):3374-80. PubMed ID: 21661058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of pK(a) in proteins with the microenvironment modulated-screened coulomb potential.
    Shan J; Mehler EL
    Proteins; 2011 Dec; 79(12):3346-55. PubMed ID: 21748803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MCCE analysis of the pKas of introduced buried acids and bases in staphylococcal nuclease.
    Gunner MR; Zhu X; Klein MC
    Proteins; 2011 Dec; 79(12):3306-19. PubMed ID: 21910138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic pKa computations in proteins: role of internal cavities.
    Meyer T; Kieseritzky G; Knapp EW
    Proteins; 2011 Dec; 79(12):3320-32. PubMed ID: 21744394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting extreme pKa shifts in staphylococcal nuclease mutants with constant pH molecular dynamics.
    Arthur EJ; Yesselman JD; Brooks CL
    Proteins; 2011 Dec; 79(12):3276-86. PubMed ID: 22002886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular determinants of the pKa values of Asp and Glu residues in staphylococcal nuclease.
    Castañeda CA; Fitch CA; Majumdar A; Khangulov V; Schlessman JL; García-Moreno BE
    Proteins; 2009 Nov; 77(3):570-88. PubMed ID: 19533744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.
    Wallace JA; Wang Y; Shi C; Pastoor KJ; Nguyen BL; Xia K; Shen JK
    Proteins; 2011 Dec; 79(12):3364-73. PubMed ID: 21748801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of pH-driven conformational transitions of proteins: insights from continuum electrostatics calculations of acid unfolding.
    Fitch CA; Whitten ST; Hilser VJ; García-Moreno E B
    Proteins; 2006 Apr; 63(1):113-26. PubMed ID: 16400648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring the successes and deficiencies of constant pH molecular dynamics: a blind prediction study.
    Williams SL; Blachly PG; McCammon JA
    Proteins; 2011 Dec; 79(12):3381-8. PubMed ID: 22072520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic effects in a network of polar and ionizable groups in staphylococcal nuclease.
    Baran KL; Chimenti MS; Schlessman JL; Fitch CA; Herbst KJ; Garcia-Moreno BE
    J Mol Biol; 2008 Jun; 379(5):1045-62. PubMed ID: 18499123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pKa Cooperative: a collaborative effort to advance structure-based calculations of pKa values and electrostatic effects in proteins.
    Nielsen JE; Gunner MR; García-Moreno BE
    Proteins; 2011 Dec; 79(12):3249-59. PubMed ID: 22002877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pKa of residue 66 in Staphylococal nuclease. I. Insights from QM/MM simulations with conventional sampling.
    Ghosh N; Cui Q
    J Phys Chem B; 2008 Jul; 112(28):8387-97. PubMed ID: 18540669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of hydrophobic microenvironments in modulating pKa shifts in proteins.
    Mehler EL; Fuxreiter M; Simon I; Garcia-Moreno EB
    Proteins; 2002 Aug; 48(2):283-92. PubMed ID: 12112696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the three-dimensional fold of a protein from approximate constraints: a simulation study.
    Soman KV; Braun W
    Cell Biochem Biophys; 2001; 34(3):283-304. PubMed ID: 11898858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray and thermodynamic studies of staphylococcal nuclease variants I92E and I92K: insights into polarity of the protein interior.
    Nguyen DM; Leila Reynald R; Gittis AG; Lattman EE
    J Mol Biol; 2004 Aug; 341(2):565-74. PubMed ID: 15276844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing hybrid approaches to predict pKa values of ionizable groups.
    Witham S; Talley K; Wang L; Zhang Z; Sarkar S; Gao D; Yang W; Alexov E
    Proteins; 2011 Dec; 79(12):3389-99. PubMed ID: 21744395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.