These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 22072525)
1. A simple elastic membrane-based microfluidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress. Gao X; Zhang X; Tong H; Lin B; Qin J Electrophoresis; 2011 Nov; 32(23):3431-6. PubMed ID: 22072525 [TBL] [Abstract][Full Text] [Related]
2. A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Sim WY; Park SW; Park SH; Min BH; Park SR; Yang SS Lab Chip; 2007 Dec; 7(12):1775-82. PubMed ID: 18030400 [TBL] [Abstract][Full Text] [Related]
3. The culture and differentiation of amniotic stem cells using a microfluidic system. Wu HW; Lin XZ; Hwang SM; Lee GB Biomed Microdevices; 2009 Aug; 11(4):869-81. PubMed ID: 19370418 [TBL] [Abstract][Full Text] [Related]
4. Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips. Ju X; Li D; Gao N; Shi Q; Hou H Biotechnol J; 2008 Mar; 3(3):383-91. PubMed ID: 18098120 [TBL] [Abstract][Full Text] [Related]
5. The role of BMP-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro. Shen B; Wei A; Whittaker S; Williams LA; Tao H; Ma DD; Diwan AD J Cell Biochem; 2010 Feb; 109(2):406-16. PubMed ID: 19950204 [TBL] [Abstract][Full Text] [Related]
6. Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Schilling T; Nöth U; Klein-Hitpass L; Jakob F; Schütze N Mol Cell Endocrinol; 2007 Jun; 271(1-2):1-17. PubMed ID: 17475397 [TBL] [Abstract][Full Text] [Related]
7. Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. Stiehler M; Bünger C; Baatrup A; Lind M; Kassem M; Mygind T J Biomed Mater Res A; 2009 Apr; 89(1):96-107. PubMed ID: 18431785 [TBL] [Abstract][Full Text] [Related]
8. Proliferation and osteogenic differentiation of mesenchymal stem cells cultured onto three different polymers in vitro. Jäger M; Feser T; Denck H; Krauspe R Ann Biomed Eng; 2005 Oct; 33(10):1319-32. PubMed ID: 16240081 [TBL] [Abstract][Full Text] [Related]
9. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Frith JE; Thomson B; Genever PG Tissue Eng Part C Methods; 2010 Aug; 16(4):735-49. PubMed ID: 19811095 [TBL] [Abstract][Full Text] [Related]
10. In vitro response of the bone marrow-derived mesenchymal stem cells seeded in a type-I collagen-glycosaminoglycan scaffold for skin wound repair under the mechanical loading condition. Kobayashi M; Spector M Mol Cell Biomech; 2009 Dec; 6(4):217-27. PubMed ID: 19899445 [TBL] [Abstract][Full Text] [Related]
11. Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. Hung SP; Ho JH; Shih YR; Lo T; Lee OK J Orthop Res; 2012 Feb; 30(2):260-6. PubMed ID: 21809383 [TBL] [Abstract][Full Text] [Related]
12. Enhanced engraftment of mesenchymal stem cells in a cutaneous wound model by culture in allogenic species-specific serum and administration in fibrin constructs. Gregory CA; Reyes E; Whitney MJ; Spees JL Stem Cells; 2006 Oct; 24(10):2232-43. PubMed ID: 16763199 [TBL] [Abstract][Full Text] [Related]
13. Dynamic expansion culture for mesenchymal stem cells. Majd H; Quinn TM; Wipff PJ; Hinz B Methods Mol Biol; 2011; 698():175-88. PubMed ID: 21431519 [TBL] [Abstract][Full Text] [Related]
14. Hypoxia increases Sca-1/CD44 co-expression in murine mesenchymal stem cells and enhances their adipogenic differentiation potential. Valorani MG; Germani A; Otto WR; Harper L; Biddle A; Khoo CP; Lin WR; Hawa MI; Tropel P; Patrizi MP; Pozzilli P; Alison MR Cell Tissue Res; 2010 Jul; 341(1):111-20. PubMed ID: 20496083 [TBL] [Abstract][Full Text] [Related]
15. Platelet-rich concentrate supports human mesenchymal stem cell proliferation, bone morphogenetic protein-2 messenger RNA expression, alkaline phosphatase activity, and bone formation in vitro: a mode of action to enhance bone repair. Parsons P; Butcher A; Hesselden K; Ellis K; Maughan J; Milner R; Scott M; Alley C; Watson JT; Horner A J Orthop Trauma; 2008 Oct; 22(9):595-604. PubMed ID: 18827588 [TBL] [Abstract][Full Text] [Related]
16. Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARγ expression and enhancing Runx2 expression. Zhang L; Su P; Xu C; Chen C; Liang A; Du K; Peng Y; Huang D J Pineal Res; 2010 Nov; 49(4):364-72. PubMed ID: 20738756 [TBL] [Abstract][Full Text] [Related]
17. Influence of cell culture media conditions on the osteogenic differentiation of cord blood-derived mesenchymal stem cells. Hildebrandt C; Büth H; Thielecke H Ann Anat; 2009 Jan; 191(1):23-32. PubMed ID: 19121571 [TBL] [Abstract][Full Text] [Related]
18. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold. Valarmathi MT; Yost MJ; Goodwin RL; Potts JD Biomaterials; 2008 May; 29(14):2203-16. PubMed ID: 18289664 [TBL] [Abstract][Full Text] [Related]
19. Effect of negative pressure on human bone marrow mesenchymal stem cells in vitro. Zhang YG; Yang Z; Zhang H; Wang C; Liu M; Guo X; Xu P Connect Tissue Res; 2010; 51(1):14-21. PubMed ID: 20067412 [TBL] [Abstract][Full Text] [Related]
20. Umbilical cord tissue-derived mesenchymal stem cells grow best under GMP-compliant culture conditions and maintain their phenotypic and functional properties. Hartmann I; Hollweck T; Haffner S; Krebs M; Meiser B; Reichart B; Eissner G J Immunol Methods; 2010 Dec; 363(1):80-9. PubMed ID: 21035451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]