These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2207259)

  • 1. Theoretical description of the spatial dependence of sickle hemoglobin polymerization.
    Zhou HX; Ferrone FA
    Biophys J; 1990 Sep; 58(3):695-703. PubMed ID: 2207259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of domain formation by sickle hemoglobin polymers.
    Basak S; Ferrone FA; Wang JT
    Biophys J; 1988 Nov; 54(5):829-43. PubMed ID: 3242632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous nucleation and crowding in sickle hemoglobin: an analytic approach.
    Ferrone FA; Ivanova M; Jasuja R
    Biophys J; 2002 Jan; 82(1 Pt 1):399-406. PubMed ID: 11751326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism.
    Ferrone FA; Hofrichter J; Eaton WA
    J Mol Biol; 1985 Jun; 183(4):611-31. PubMed ID: 4020873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The double nucleation model for sickle cell haemoglobin polymerization: full integration and comparison with experimental data.
    Medkour T; Ferrone F; Galactéros F; Hannaert P
    Acta Biotheor; 2008 Jun; 56(1-2):103-22. PubMed ID: 18247134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetics of nucleation and growth of sickle cell hemoglobin fibers.
    Galkin O; Nagel RL; Vekilov PG
    J Mol Biol; 2007 Jan; 365(2):425-39. PubMed ID: 17069853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monomer diffusion into polymer domains in sickle hemoglobin.
    Cho MR; Ferrone FA
    Biophys J; 1990 Oct; 58(4):1067-73. PubMed ID: 2248990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulated formation of polymer domains in sickle hemoglobin.
    Dou Q; Ferrone FA
    Biophys J; 1993 Nov; 65(5):2068-77. PubMed ID: 8298036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The growth of sickle hemoglobin polymers.
    Aprelev A; Liu Z; Ferrone FA
    Biophys J; 2011 Aug; 101(4):885-91. PubMed ID: 21843479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Hb A variant (beta73 Asp-->Leu) disrupts Hb S polymerization by a novel mechanism.
    Adachi K; Ding M; Surrey S; Rotter M; Aprelev A; Zakharov M; Weng W; Ferrone FA
    J Mol Biol; 2006 Sep; 362(3):528-38. PubMed ID: 16926024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monomer diffusion and polymer alignment in domains of sickle hemoglobin.
    Cho MR; Ferrone FA
    Biophys J; 1992 Jul; 63(1):205-14. PubMed ID: 1420868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure and mechanism of formation of human calcitonin fibrils.
    Arvinte T; Cudd A; Drake AF
    J Biol Chem; 1993 Mar; 268(9):6415-22. PubMed ID: 8454614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques.
    Ferrone FA; Hofrichter J; Eaton WA
    J Mol Biol; 1985 Jun; 183(4):591-610. PubMed ID: 4020872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 50th order reaction predicted and observed for sickle hemoglobin nucleation.
    Cao Z; Ferrone FA
    J Mol Biol; 1996 Feb; 256(2):219-22. PubMed ID: 8594190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonideality and the nucleation of sickle hemoglobin.
    Ivanova M; Jasuja R; Kwong S; Briehl RW; Ferrone FA
    Biophys J; 2000 Aug; 79(2):1016-22. PubMed ID: 10920031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metastable polymerization of sickle hemoglobin in droplets.
    Aprelev A; Weng W; Zakharov M; Rotter M; Yosmanovich D; Kwong S; Briehl RW; Ferrone FA
    J Mol Biol; 2007 Jun; 369(5):1170-4. PubMed ID: 17493634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the mechanisms of slow religation to sickle cell hemoglobin polymers following laser photolysis.
    Shapiro DB; Esquerra RM; Goldbeck RA; Ballas SK; Mohandas N; Kliger DS
    J Mol Biol; 1996 Jun; 259(5):947-56. PubMed ID: 8683597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the intermolecular contacts within sickle hemoglobin fibers: effect of site-specific substitutions, fiber pitch, and double-strand disorder.
    Watowich SJ; Gross LJ; Josephs R
    J Struct Biol; 1993; 111(3):161-79. PubMed ID: 8003379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleation, fiber growth and melting, and domain formation and structure in sickle cell hemoglobin gels.
    Briehl RW
    J Mol Biol; 1995 Feb; 245(5):710-23. PubMed ID: 7844835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemoglobin S polymerization and gelation under shear II. The joint concentration and shear dependence of kinetics.
    Samuel RE; Guzman AE; Briehl RW
    Blood; 1993 Dec; 82(11):3474-81. PubMed ID: 8241514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.