These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 2207283)

  • 21. Studies of DNA dumbbells. V. A DNA triplex formed between a 28 base-pair DNA dumbbell substrate and a 16 base linear single strand.
    Paner TM; Gallo FJ; Doktycz MJ; Benight AS
    Biopolymers; 1993 Dec; 33(12):1779-89. PubMed ID: 8268406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energetics of the hairpin to mismatched duplex transition of d(GCCGCAGC) on NaCl solution.
    Garcia AE; Gupta G; Soumpasis DM; Tung CS
    J Biomol Struct Dyn; 1990 Aug; 8(1):173-86. PubMed ID: 2275792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Melting of a self-complementary DNA minicircle. Comparison of optical melting theory with exchange broadening of the nuclear magnetic resonance spectrum.
    Benight AS; Schurr JM; Flynn PF; Reid BR; Wemmer DE
    J Mol Biol; 1988 Mar; 200(2):377-99. PubMed ID: 2836596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perturbation of DNA hairpins containing the EcoRI recognition site by hairpin loops of varying size and composition: physical (NMR and UV) and enzymatic (EcoRI) studies.
    Germann MW; Kalisch BW; Lundberg P; Vogel HJ; van de Sande JH
    Nucleic Acids Res; 1990 Mar; 18(6):1489-98. PubMed ID: 2326190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamics of melting of the circular dumbbell d.
    Ippel JH; Lanzotti V; Galeone A; Mayol L; Van den Boogaart JE; Pikkemaat JA; Altona C
    Biopolymers; 1995 Dec; 36(6):701-10. PubMed ID: 8555418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hairpin formation of d(CGCG-TA-CGCG), d(CGCG-TG-CGCG) and their cytosine methylated analogs.
    Chen FM
    J Biomol Struct Dyn; 1989 Jun; 6(6):1239-57. PubMed ID: 2818865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrophoretic mobility is a reporter of hairpin structure in single-stranded DNA oligomers.
    Stellwagen E; Abdulla A; Dong Q; Stellwagen NC
    Biochemistry; 2007 Sep; 46(38):10931-41. PubMed ID: 17764160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of loops and nicks to the formation of DNA dumbbells: melting behavior and ligand binding.
    Rentzeperis D; Ho J; Marky LA
    Biochemistry; 1993 Mar; 32(10):2564-72. PubMed ID: 8448114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fine structure melting of viroids as studied by kinetic methods.
    Henco K; Sänger HL; Riesner D
    Nucleic Acids Res; 1979 Jul; 6(9):3041-59. PubMed ID: 493134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling of sequential transitions in a DNA double hairpin: energetics, ion binding, and hydration.
    Rentzeperis D; Kharakoz DP; Marky LA
    Biochemistry; 1991 Jun; 30(25):6276-83. PubMed ID: 2059634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-nearest neighbor effects on the thermodynamics of unfolding of a model mRNA pseudoknot.
    Theimer CA; Wang Y; Hoffman DW; Krisch HM; Giedroc DP
    J Mol Biol; 1998 Jun; 279(3):545-64. PubMed ID: 9641977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies of DNA dumbbells VII: evaluation of the next-nearest-neighbor sequence-dependent interactions in duplex DNA.
    Owczarzy R; Vallone PM; Goldstein RF; Benight AS
    Biopolymers; 1999; 52(1):29-56. PubMed ID: 10737861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of hydrostatic pressure on the thermal stability of DNA hairpins.
    Amiri AR; Macgregor RB
    Biophys Chem; 2011 Jun; 156(1):88-95. PubMed ID: 21392879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-throughput thermal stability assessment of DNA hairpins based on high resolution melting.
    Wang J; Dong P; Wu W; Pan X; Liang X
    J Biomol Struct Dyn; 2018 Jan; 36(1):1-13. PubMed ID: 28024437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stability of RNA hairpin loops closed by AU base pairs.
    Vecenie CJ; Serra MJ
    Biochemistry; 2004 Sep; 43(37):11813-7. PubMed ID: 15362866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strong binding of single-stranded DNA by stem-loop oligonucleotides.
    D'Souza DJ; Kool ET
    J Biomol Struct Dyn; 1992 Aug; 10(1):141-52. PubMed ID: 1418737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A thermodynamic study of unusually stable RNA and DNA hairpins.
    Antao VP; Lai SY; Tinoco I
    Nucleic Acids Res; 1991 Nov; 19(21):5901-5. PubMed ID: 1719483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A test of the model to predict unusually stable RNA hairpin loop stability.
    Dale T; Smith R; Serra MJ
    RNA; 2000 Apr; 6(4):608-15. PubMed ID: 10786851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNase H1 can catalyze RNA/DNA hybrid formation and cleavage with stable hairpin or duplex DNA oligomers.
    Li J; Wartell RM
    Biochemistry; 1998 Apr; 37(15):5154-61. PubMed ID: 9548746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.