BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 22073007)

  • 1. Anti-biofilm compounds derived from marine sponges.
    Stowe SD; Richards JJ; Tucker AT; Thompson R; Melander C; Cavanagh J
    Mar Drugs; 2011; 9(10):2010-2035. PubMed ID: 22073007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small molecule control of bacterial biofilms.
    Worthington RJ; Richards JJ; Melander C
    Org Biomol Chem; 2012 Oct; 10(37):7457-74. PubMed ID: 22733439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-Larval and Anti-Algal Natural Products from Marine Microorganisms as Sources of Anti-Biofilm Agents.
    Wang KL; Dou ZR; Gong GF; Li HF; Jiang B; Xu Y
    Mar Drugs; 2022 Jan; 20(2):. PubMed ID: 35200620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principles of biofouling protection in marine sponges: a model for the design of novel biomimetic and bio-inspired coatings in the marine environment?
    Müller WE; Wang X; Proksch P; Perry CC; Osinga R; Gardères J; Schröder HC
    Mar Biotechnol (NY); 2013 Aug; 15(4):375-98. PubMed ID: 23525893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic Approaches for the Development of New Antifouling Solutions: Study of Incorporation of Macroalgae and Sponge Extracts for the Development of New Environmentally-Friendly Coatings.
    Sánchez-Lozano I; Hernández-Guerrero CJ; Muñoz-Ochoa M; Hellio C
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31574976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm formation mechanisms and targets for developing antibiofilm agents.
    Rabin N; Zheng Y; Opoku-Temeng C; Du Y; Bonsu E; Sintim HO
    Future Med Chem; 2015; 7(4):493-512. PubMed ID: 25875875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of Antibiofilm Activity of Elasnin against Marine Biofilms and Its Application in the Marine Antifouling Coatings.
    Long L; Wang R; Chiang HY; Ding W; Li YX; Chen F; Qian PY
    Mar Drugs; 2021 Jan; 19(1):. PubMed ID: 33466541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of UV-C Irradiation on Marine Biofilm Community Succession.
    Naik A; Smithers M; Moisander PH
    Appl Environ Microbiol; 2022 Feb; 88(4):e0229821. PubMed ID: 34936837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of bacterial biofilm formation using marine natural antimicrobial peptides.
    Doiron K; Beaulieu L; St-Louis R; Lemarchand K
    Colloids Surf B Biointerfaces; 2018 Jul; 167():524-530. PubMed ID: 29729630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quorum sensing inhibitors from Leucetta chagosensis Dendy, 1863.
    Mai T; Tintillier F; Lucasson A; Moriou C; Bonno E; Petek S; Magré K; Al Mourabit A; Saulnier D; Debitus C
    Lett Appl Microbiol; 2015 Oct; 61(4):311-7. PubMed ID: 26138555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marine Antimicrobial Peptides-Based Strategies for Tackling Bacterial Biofilm and Biofouling Challenges.
    Patra A; Das J; Agrawal NR; Kushwaha GS; Ghosh M; Son YO
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Selective Review on the Novel Approaches and Potential Control Agents of Anti-biofouling and Anti-biofilming.
    Joardar I; Dutta S
    Appl Biochem Biotechnol; 2023 Sep; 195(9):5605-5617. PubMed ID: 36066803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and biological evaluation of 2-aminoimidazole/carbamate hybrid anti-biofilm and anti-microbial agents.
    Rogers SA; Lindsey EA; Whitehead DC; Mullikin T; Melander C
    Bioorg Med Chem Lett; 2011 Feb; 21(4):1257-60. PubMed ID: 21251823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dipeptide cis-cyclo(Leucyl-Tyrosyl) produced by sponge associated Penicillium sp. F37 inhibits biofilm formation of the pathogenic Staphylococcus epidermidis.
    Scopel M; Abraham WR; Henriques AT; Macedo AJ
    Bioorg Med Chem Lett; 2013 Feb; 23(3):624-6. PubMed ID: 23290053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative antibacterial activity of polymeric 3-alkylpyridinium salts isolated from the Mediterranean sponge Reniera sarai and their synthetic analogues.
    Chelossi E; Mancini I; Sepcić K; Turk T; Faimali M
    Biomol Eng; 2006 Dec; 23(6):317-23. PubMed ID: 17113346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next generation biofilm inhibitors for Pseudomonas aeruginosa: Synthesis and rational design approaches.
    Majik MS; Parvatkar PT
    Curr Top Med Chem; 2014; 14(1):81-109. PubMed ID: 24236724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilms: an extra hurdle for effective antimicrobial therapy.
    Cos P; Toté K; Horemans T; Maes L
    Curr Pharm Des; 2010; 16(20):2279-95. PubMed ID: 20433417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marine-derived antimicrobial molecules from the sponges and their associated bacteria.
    Devkar HU; Thakur NL; Kaur P
    Can J Microbiol; 2023 Jan; 69(1):1-16. PubMed ID: 36288610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening of bromotyramine analogues as antifouling compounds against marine bacteria.
    Andjouh S; Blache Y
    Biofouling; 2016 Sep; 32(8):871-81. PubMed ID: 27450150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Microbial Mechanisms of a Novel Photosensitive Material (Treated Rape Pollen) in Anti-Biofilm Process under Marine Environment.
    Li QC; Wang B; Zeng YH; Cai ZH; Zhou J
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.