These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structural Annotation of the Mycobacterium tuberculosis Proteome. Chandra N; Sandhya S; Anand P Microbiol Spectr; 2014 Apr; 2(2):. PubMed ID: 26105824 [TBL] [Abstract][Full Text] [Related]
3. A genome-wide structure-based survey of nucleotide binding proteins in M. tuberculosis. Bhagavat R; Kim HB; Kim CY; Terwilliger TC; Mehta D; Srinivasan N; Chandra N Sci Rep; 2017 Oct; 7(1):12489. PubMed ID: 28970579 [TBL] [Abstract][Full Text] [Related]
4. Implementation of homology based and non-homology based computational methods for the identification and annotation of orphan enzymes: using Mycobacterium tuberculosis H37Rv as a case study. Sinha S; Lynn AM; Desai DK BMC Bioinformatics; 2020 Oct; 21(1):466. PubMed ID: 33076816 [TBL] [Abstract][Full Text] [Related]
5. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. Raman K; Yeturu K; Chandra N BMC Syst Biol; 2008 Dec; 2():109. PubMed ID: 19099550 [TBL] [Abstract][Full Text] [Related]
6. Enriching the annotation of Mycobacterium tuberculosis H37Rv proteome using remote homology detection approaches: insights into structure and function. Ramakrishnan G; Ochoa-Montaño B; Raghavender US; Mudgal R; Joshi AG; Chandra NR; Sowdhamini R; Blundell TL; Srinivasan N Tuberculosis (Edinb); 2015 Jan; 95(1):14-25. PubMed ID: 25467293 [TBL] [Abstract][Full Text] [Related]
7. Enhanced functional and structural domain assignments using remote similarity detection procedures for proteins encoded in the genome of Mycobacterium tuberculosis H37Rv. Namboori S; Mhatre N; Sujatha S; Srinivasan N; Pandit SB J Biosci; 2004 Sep; 29(3):245-59. PubMed ID: 15381846 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional analysis of Rv3214 from Mycobacterium tuberculosis, a protein with conflicting functional annotations, leads to its characterization as a phosphatase. Watkins HA; Baker EN J Bacteriol; 2006 May; 188(10):3589-99. PubMed ID: 16672613 [TBL] [Abstract][Full Text] [Related]
14. The progress made in determining the Mycobacterium tuberculosis structural proteome. Ehebauer MT; Wilmanns M Proteomics; 2011 Aug; 11(15):3128-33. PubMed ID: 21674801 [TBL] [Abstract][Full Text] [Related]
15. Common recognition principles across diverse sequence and structural families of sialic acid binding proteins. Bhagavat R; Chandra N Glycobiology; 2014 Jan; 24(1):5-16. PubMed ID: 24043392 [TBL] [Abstract][Full Text] [Related]
16. Computational structural analysis of proteins of Mycobacterium tuberculosis and a resource for identifying off-targets. Hassan S; Debnath A; Mahalingam V; Hanna LE J Mol Model; 2012 Aug; 18(8):3993-4004. PubMed ID: 22538508 [TBL] [Abstract][Full Text] [Related]
17. Functional, structural and epitopic prediction of hypothetical proteins of Mycobacterium tuberculosis H37Rv: An in silico approach for prioritizing the targets. Gazi MA; Kibria MG; Mahfuz M; Islam MR; Ghosh P; Afsar MN; Khan MA; Ahmed T Gene; 2016 Oct; 591(2):442-55. PubMed ID: 27374154 [TBL] [Abstract][Full Text] [Related]
18. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Camus JC; Pryor MJ; Médigue C; Cole ST Microbiology (Reading); 2002 Oct; 148(Pt 10):2967-2973. PubMed ID: 12368430 [TBL] [Abstract][Full Text] [Related]
19. Comparison of predicted and observed properties of proteins encoded in the genome of Mycobacterium tuberculosis H37Rv. Urquhart BL; Cordwell SJ; Humphery-Smith I Biochem Biophys Res Commun; 1998 Dec; 253(1):70-9. PubMed ID: 9875222 [TBL] [Abstract][Full Text] [Related]
20. A computational study of Shewanella oneidensis MR-1: structural prediction and functional inference of hypothetical proteins. Yost C; Hauser L; Larimer F; Thompson D; Beliaev A; Zhou J; Xu Y; Xu D OMICS; 2003; 7(2):177-91. PubMed ID: 14506847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]