BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 22074256)

  • 1. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces.
    Steuwe C; Kaminski CF; Baumberg JJ; Mahajan S
    Nano Lett; 2011 Dec; 11(12):5339-43. PubMed ID: 22074256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings.
    Ouyang L; Meyer-Zedler T; See KM; Chen WL; Lin FC; Akimov D; Ehtesabi S; Richter M; Schmitt M; Chang YM; Gräfe S; Popp J; Huang JS
    ACS Nano; 2021 Jan; 15(1):809-818. PubMed ID: 33356140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Molecular Coherent Anti-Stokes Raman Scattering with Silicon Nanoantennas.
    Abedin S; Li Y; Sifat AA; Roy K; Potma EO
    Nano Lett; 2022 Aug; 22(16):6685-6691. PubMed ID: 35960899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS).
    Meyer SA; Le Ru EC; Etchegoin PG
    Anal Chem; 2011 Mar; 83(6):2337-44. PubMed ID: 21322587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements.
    He J; Fan C; Ding P; Zhu S; Liang E
    Sci Rep; 2016 Feb; 6():20777. PubMed ID: 26861192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproducible SERRS from structured gold surfaces.
    Mahajan S; Baumberg JJ; Russell AE; Bartlett PN
    Phys Chem Chem Phys; 2007 Dec; 9(45):6016-20. PubMed ID: 18004415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold mesoflower arrays with sub-10 nm intraparticle gaps for highly sensitive and repeatable surface enhanced Raman spectroscopy.
    Tian C; Liu Z; Jin J; Lebedkin S; Huang C; You H; Liu R; Wang L; Song X; Ding B; Barczewski M; Schimmel T; Fang J
    Nanotechnology; 2012 Apr; 23(16):165604. PubMed ID: 22469765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds.
    Hugall JT; Baumberg JJ
    Nano Lett; 2015 Apr; 15(4):2600-4. PubMed ID: 25734469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters.
    Kneipp K; Kneipp H
    Faraday Discuss; 2006; 132():27-33; discussion 85-94. PubMed ID: 16833105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immuno-surface-enhanced coherent anti-stokes Raman scattering microscopy: immunohistochemistry with target-specific metallic nanoprobes and nonlinear Raman microscopy.
    Schlücker S; Salehi M; Bergner G; Schütz M; Ströbel P; Marx A; Petersen I; Dietzek B; Popp J
    Anal Chem; 2011 Sep; 83(18):7081-5. PubMed ID: 21819074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of hotspots in a highly enhancing SERS substrate.
    Asiala SM; Schultz ZD
    Analyst; 2011 Nov; 136(21):4472-9. PubMed ID: 21946698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering.
    Lee H; Lee JH; Jin SM; Suh YD; Nam JM
    Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Silver Nanostructured Substrates for Plasmonic Sensors.
    Gahlaut SK; Pathak A; Gupta BD
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide.
    Dovbeshko G; Fesenko O; Dementjev A; Karpicz R; Fedorov V; Posudievsky OY
    Nanoscale Res Lett; 2014; 9(1):263. PubMed ID: 24948887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S; Grady NK; Kundu J; Levin CS; Lassiter JB; Halas NJ
    Chem Soc Rev; 2008 May; 37(5):898-911. PubMed ID: 18443675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fano-resonance plasmonic assembly for broadband-enhanced coherent anti-Stokes Raman scattering.
    Zhang Y; Lu M; Zhu Z; Li Y; Wei H
    Sci Rep; 2023 May; 13(1):7283. PubMed ID: 37142647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M
    Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK
    Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.