These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 22074492)
1. Rationally designed phthalocyanines having their main absorption band beyond 1000 nm. Kobayashi N; Furuyama T; Satoh K J Am Chem Soc; 2011 Dec; 133(49):19642-5. PubMed ID: 22074492 [TBL] [Abstract][Full Text] [Related]
2. Design, synthesis, and properties of phthalocyanine complexes with main-group elements showing main absorption and fluorescence beyond 1000 nm. Furuyama T; Satoh K; Kushiya T; Kobayashi N J Am Chem Soc; 2014 Jan; 136(2):765-76. PubMed ID: 24328229 [TBL] [Abstract][Full Text] [Related]
3. Synthesis, spectral, and electrochemical characterization of the first arsenic(V)-phthalocyanines. Isago H; Kagaya Y Inorg Chem; 2012 Aug; 51(15):8447-54. PubMed ID: 22812716 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, spectroscopy, and electrochemistry of tetra-tert-butylated tetraazaporphyrins, phthalocyanines, naphthalocyanines, and anthracocyanines, together with molecular orbital calculations. Kobayashi N; Nakajima S; Ogata H; Fukuda T Chemistry; 2004 Dec; 10(24):6294-312. PubMed ID: 15526320 [TBL] [Abstract][Full Text] [Related]
5. Re-examination of the emission properties of alkoxy- and thioalkyl-substituted phthalocyanines. Mack J; Kobayashi N; Stillman MJ J Inorg Biochem; 2010 Mar; 104(3):310-7. PubMed ID: 19932508 [TBL] [Abstract][Full Text] [Related]
6. Substituent effects on the structure-property relationship of unsymmetrical methyloxy and methoxycarbonyl phthalocyanines: DFT and TDDFT theoretical studies. Zhang L; Qi D; Zhao L; Bian Y; Li W J Mol Graph Model; 2012 May; 35():57-65. PubMed ID: 22196958 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and cellular studies of nonaggregated water-soluble phthalocyanines. Liu W; Jensen TJ; Fronczek FR; Hammer RP; Smith KM; Vicente MG J Med Chem; 2005 Feb; 48(4):1033-41. PubMed ID: 15715471 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, aggregation and spectroscopic studies of novel water soluble metal free, zinc, copper and magnesium phthalocyanines and investigation of their anti-bacterial properties. Bayrak R; Akçay HT; Beriş FŞ; Sahin E; Bayrak H; Demirbaş Ü Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():272-80. PubMed ID: 24952089 [TBL] [Abstract][Full Text] [Related]
9. The photochemistry and photophysics of a series of non-peripherally substituted zinc phthalocyanines. van Leeuwen M; Beeby A; Ashworth SH Photochem Photobiol Sci; 2010 Mar; 9(3):370-5. PubMed ID: 20221464 [TBL] [Abstract][Full Text] [Related]
10. Near-infrared two-photon absorption in phthalocyanines: enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution. Drobizhev M; Makarov NS; Stepanenko Y; Rebane A J Chem Phys; 2006 Jun; 124(22):224701. PubMed ID: 16784295 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of axially substituted tetrapyrazinoporphyrazinato metal complexes for optical limiting and study of their photophysical properties. Dini D; Hanack M; Egelhaaf HJ; Sancho-García JC; Cornil J J Phys Chem B; 2005 Mar; 109(12):5425-32. PubMed ID: 16851576 [TBL] [Abstract][Full Text] [Related]
12. Effect of peripheral substitution on the electronic absorption and fluorescence spectra of metal-free and zinc phthalocyanines. Kobayashi N; Ogata H; Nonaka N; Luk'yanets EA Chemistry; 2003 Oct; 9(20):5123-34. PubMed ID: 14562330 [TBL] [Abstract][Full Text] [Related]
13. Structures and spectroscopic properties of nonperipherally and peripherally substituted metal-free phthalocyanines: a substitution effect study based on density functional theory calculations. Zhong A; Zhang Y; Bian Y J Mol Graph Model; 2010 Nov; 29(3):470-80. PubMed ID: 20951071 [TBL] [Abstract][Full Text] [Related]
15. Interaction of cationic phthalocyanines with DNA. Importance of the structure of the substituents. López Zeballos NC; Gauna GA; García Vior MC; Awruch J; Dicelio LE J Photochem Photobiol B; 2014 Jul; 136():29-33. PubMed ID: 24838031 [TBL] [Abstract][Full Text] [Related]
17. Rectangular-shaped expanded phthalocyanines with two central metal atoms. Matsushita O; Derkacheva VM; Muranaka A; Shimizu S; Uchiyama M; Luk'yanets EA; Kobayashi N J Am Chem Soc; 2012 Feb; 134(7):3411-8. PubMed ID: 22315975 [TBL] [Abstract][Full Text] [Related]
18. The synthesis and characterization of nonperipherally tetra terminal alkynyl substituted phthalocyanines and glycoconjugation via the click reaction. Kanat Z; Dinçer H Dalton Trans; 2014 Jun; 43(23):8654-63. PubMed ID: 24763524 [TBL] [Abstract][Full Text] [Related]
19. Spectral, photophysical and photochemical properties of tetra- and octaglycosylated zinc phthalocyanines. Iqbal Z; Masilela N; Nyokong T; Lyubimtsev A; Hanack M; Ziegler T Photochem Photobiol Sci; 2012 Apr; 11(4):679-86. PubMed ID: 22286670 [TBL] [Abstract][Full Text] [Related]
20. Chemistry at boron: synthesis and properties of red to near-IR fluorescent dyes based on boron-substituted diisoindolomethene frameworks. Ulrich G; Goeb S; De Nicola A; Retailleau P; Ziessel R J Org Chem; 2011 Jun; 76(11):4489-505. PubMed ID: 21500815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]