These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 22075122)
1. Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential. Wang X; Gittens RA; Song R; Tannenbaum R; Olivares-Navarrete R; Schwartz Z; Chen H; Boyan BD Acta Biomater; 2012 Feb; 8(2):878-85. PubMed ID: 22075122 [TBL] [Abstract][Full Text] [Related]
2. Role of integrin α2 β1 in mediating osteoblastic differentiation on three-dimensional titanium scaffolds with submicron-scale texture. Wang X; Schwartz Z; Gittens RA; Cheng A; Olivares-Navarrete R; Chen H; Boyan BD J Biomed Mater Res A; 2015 Jun; 103(6):1907-18. PubMed ID: 25203434 [TBL] [Abstract][Full Text] [Related]
3. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Gao X; Zhang X; Song J; Xu X; Xu A; Wang M; Xie B; Huang E; Deng F; Wei S Int J Nanomedicine; 2015; 10():7109-28. PubMed ID: 26604759 [TBL] [Abstract][Full Text] [Related]
4. Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair. Song J; Zhu G; Wang L; An G; Shi X; Wang Y Biofabrication; 2017 Feb; 9(1):015018. PubMed ID: 28140360 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of electrospun silica-titania nanofibers with different silica content and evaluation of the morphology and osteoinductive properties. Wang X; Zhu J; Yin L; Liu S; Zhang X; Ao Y; Chen H J Biomed Mater Res A; 2012 Dec; 100(12):3511-7. PubMed ID: 22767362 [TBL] [Abstract][Full Text] [Related]
6. Surface modification of TiO Lai M; Jin Z; Su Z Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():490-497. PubMed ID: 28183637 [TBL] [Abstract][Full Text] [Related]
7. Nanofiber orientation and surface functionalization modulate human mesenchymal stem cell behavior in vitro. Kolambkar YM; Bajin M; Wojtowicz A; Hutmacher DW; García AJ; Guldberg RE Tissue Eng Part A; 2014 Jan; 20(1-2):398-409. PubMed ID: 24020454 [TBL] [Abstract][Full Text] [Related]
8. Composite nanofiber mats consisting of hydroxyapatite and titania for biomedical applications. Kim HM; Chae WP; Chang KW; Chun S; Kim S; Jeong Y; Kang IK J Biomed Mater Res B Appl Biomater; 2010 Aug; 94(2):380-387. PubMed ID: 20574975 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of multifunctional cellulose/TiO Ashraf R; Sofi HS; Akram T; Rather HA; Abdal-Hay A; Shabir N; Vasita R; Alrokayan SH; Khan HA; Sheikh FA J Biomed Mater Res A; 2020 Apr; 108(4):947-962. PubMed ID: 31894888 [TBL] [Abstract][Full Text] [Related]
10. Electrospinning Nanofiber-Reinforced Aerogels for the Treatment of Bone Defects. Zhang Y; Yin C; Cheng Y; Huang X; Liu K; Cheng G; Li Z Adv Wound Care (New Rochelle); 2020 Aug; 9(8):441-452. PubMed ID: 32857019 [No Abstract] [Full Text] [Related]
11. Fabrication of a biomimetic ZeinPDA nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO Babitha S; Annamalai M; Dykas MM; Saha S; Poddar K; Venugopal JR; Ramakrishna S; Venkatesan T; Korrapati PS J Tissue Eng Regen Med; 2018 Apr; 12(4):991-1001. PubMed ID: 28871656 [TBL] [Abstract][Full Text] [Related]
12. Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments. Chen X; Fu X; Shi JG; Wang H Nanomedicine; 2013 Nov; 9(8):1283-92. PubMed ID: 23665421 [TBL] [Abstract][Full Text] [Related]
14. Effects of Immobilized BMP-2 and Nanofiber Morphology on In Vitro Osteogenic Differentiation of hMSCs and In Vivo Collagen Assembly of Regenerated Bone. Perikamana SK; Lee J; Ahmad T; Jeong Y; Kim DG; Kim K; Shin H ACS Appl Mater Interfaces; 2015 Apr; 7(16):8798-808. PubMed ID: 25823598 [TBL] [Abstract][Full Text] [Related]
15. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Kennedy KM; Bhaw-Luximon A; Jhurry D Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142 [TBL] [Abstract][Full Text] [Related]
16. Effects of nanofibers on mesenchymal stem cells: environmental factors affecting cell adhesion and osteogenic differentiation and their mechanisms. Yu D; Wang J; Qian KJ; Yu J; Zhu HY J Zhejiang Univ Sci B; 2020 Nov.; 21(11):871-884. PubMed ID: 33150771 [TBL] [Abstract][Full Text] [Related]
17. Osteogenic activity of a titanium surface modified with silicon-doped titanium dioxide. Zhao QM; Li XK; Guo S; Wang N; Liu WW; Shi L; Guo Z Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110682. PubMed ID: 32204111 [TBL] [Abstract][Full Text] [Related]
18. Osteogenic differentiation of MC3T3-E1 cells on poly(L-lactide)/Fe3O4 nanofibers with static magnetic field exposure. Cai Q; Shi Y; Shan D; Jia W; Duan S; Deng X; Yang X Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():166-73. PubMed ID: 26117751 [TBL] [Abstract][Full Text] [Related]
19. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues. Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143 [TBL] [Abstract][Full Text] [Related]
20. The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells. Wang B; Cai Q; Zhang S; Yang X; Deng X J Mech Behav Biomed Mater; 2011 May; 4(4):600-9. PubMed ID: 21396609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]