BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

635 related articles for article (PubMed ID: 22075175)

  • 1. Designing advanced alkaline polymer electrolytes for fuel cell applications.
    Pan J; Chen C; Zhuang L; Lu J
    Acc Chem Res; 2012 Mar; 45(3):473-81. PubMed ID: 22075175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications.
    Miyatake K; Chikashige Y; Higuchi E; Watanabe M
    J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An effective approach for alleviating cation-induced backbone degradation in aromatic ether-based alkaline polymer electrolytes.
    Han J; Liu Q; Li X; Pan J; Wei L; Wu Y; Peng H; Wang Y; Li G; Chen C; Xiao L; Lu J; Zhuang L
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2809-16. PubMed ID: 25594224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications.
    Asano N; Aoki M; Suzuki S; Miyatake K; Uchida H; Watanabe M
    J Am Chem Soc; 2006 Feb; 128(5):1762-9. PubMed ID: 16448153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly stable alkaline polymer electrolyte based on a poly(ether ether ketone) backbone.
    Han J; Peng H; Pan J; Wei L; Li G; Chen C; Xiao L; Lu J; Zhuang L
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13405-11. PubMed ID: 24229363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Micromorphology on Alkaline Polymer Electrolyte Stability.
    Han J; Pan J; Chen C; Wei L; Wang Y; Pan Q; Zhao N; Xie B; Xiao L; Lu J; Zhuang L
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):469-477. PubMed ID: 30525423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations of the ex situ ionic conductivities at 30 degrees C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities.
    Varcoe JR
    Phys Chem Chem Phys; 2007 Mar; 9(12):1479-86. PubMed ID: 17356755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications.
    Robertson NJ; Kostalik HA; Clark TJ; Mutolo PF; Abruña HD; Coates GW
    J Am Chem Soc; 2010 Mar; 132(10):3400-4. PubMed ID: 20178312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells.
    Li N; Leng Y; Hickner MA; Wang CY
    J Am Chem Soc; 2013 Jul; 135(27):10124-33. PubMed ID: 23721192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes.
    Di Noto V; Gliubizzi R; Negro E; Pace G
    J Phys Chem B; 2006 Dec; 110(49):24972-86. PubMed ID: 17149919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfonated Nanobamboo Fiber-Reinforced Quaternary Ammonia Poly(ether ether ketone) Membranes for Alkaline Polymer Electrolyte Fuel Cells.
    Peng Y; Wang Y; Wei X; Zhou J; Peng H; Xiao L; Lu J; Zhuang L
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33581-33588. PubMed ID: 30198705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Click Chemistry Finds Its Way in Constructing an Ionic Highway in Anion-Exchange Membrane.
    Ge Q; Ran J; Miao J; Yang Z; Xu T
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28545-53. PubMed ID: 26645427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity.
    Gu S; Skovgard J; Yan YS
    ChemSusChem; 2012 May; 5(5):843-8. PubMed ID: 22528244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain size manipulation of perflouorinated polymer electrolytes by sulfonic acid-functionalized MWCNTs to enhance fuel cell performance.
    Kannan R; Parthasarathy M; Maraveedu SU; Kurungot S; Pillai VK
    Langmuir; 2009 Jul; 25(14):8299-305. PubMed ID: 19594190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(arylene ether)s containing superacid groups as proton exchange membranes.
    Mikami T; Miyatake K; Watanabe M
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1714-21. PubMed ID: 20491452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heteropolyacid-encapsulated self-assembled materials for anhydrous proton-conducting electrolytes.
    Yamada M; Honma I
    J Phys Chem B; 2006 Oct; 110(41):20486-90. PubMed ID: 17034234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly conductive anion exchange membrane for high power density fuel-cell performance.
    Ren X; Price SC; Jackson AC; Pomerantz N; Beyer FL
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13330-3. PubMed ID: 25101785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and properties of sulfonated block copolymers having fluorenyl groups for fuel-cell applications.
    Bae B; Miyatake K; Watanabe M
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1279-86. PubMed ID: 20355924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of efficient methanol impermeable membranes for fuel cell applications.
    Lufrano F; Baglio V; Di Blasi O; Staiti P; Antonucci V; Aricò AS
    Phys Chem Chem Phys; 2012 Feb; 14(8):2718-26. PubMed ID: 22274611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.