BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22075633)

  • 1. Development of a glutathione production process from proteinaceous biomass resources using protease-displaying Saccharomyces cerevisiae.
    Hara KY; Kim S; Yoshida H; Kiriyama K; Kondo T; Okai N; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1495-502. PubMed ID: 22075633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and direct glutathione production from raw starch using engineered Saccharomyces cerevisiae.
    Yoshida H; Arai S; Hara KY; Yamada R; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1417-22. PubMed ID: 21104244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An energy-saving glutathione production method from low-temperature cooked rice using amylase-expressing Saccharomyces cerevisiae.
    Hara KY; Kim S; Kiriyama K; Yoshida H; Arai S; Ishii J; Ogino C; Fukuda H; Kondo A
    Biotechnol J; 2012 May; 7(5):686-9. PubMed ID: 22294378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidized glutathione fermentation using Saccharomyces cerevisiae engineered for glutathione metabolism.
    Kiriyama K; Hara KY; Kondo A
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7399-404. PubMed ID: 23820559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae.
    Hara KY; Kiriyama K; Inagaki A; Nakayama H; Kondo A
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1313-9. PubMed ID: 22234534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter.
    Kiriyama K; Hara KY; Kondo A
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):1021-7. PubMed ID: 22526809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae.
    Hara KY; Aoki N; Kobayashi J; Kiriyama K; Nishida K; Araki M; Kondo A
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9771-8. PubMed ID: 26239069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the performance of industrial ethanol-producing yeast by expressing the aspartyl protease on the cell surface.
    Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY
    Yeast; 2010 Dec; 27(12):1017-27. PubMed ID: 20737427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved glutathione production by gene expression in Pichia pastoris.
    Fei L; Wang Y; Chen S
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):729-35. PubMed ID: 19153769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae.
    He X; Guo X; Liu N; Zhang B
    Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of self-cloning, indigenous wine strains of Saccharomyces cerevisiae with enhanced glycerol and glutathione production.
    Hao RY; Liu YL; Wang ZY; Zhang BR
    Biotechnol Lett; 2012 Sep; 34(9):1711-7. PubMed ID: 22648686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic improvement of mitochondrial thiol oxidase Erv1 for oxidized glutathione fermentation by Saccharomyces cerevisiae.
    Kobayashi J; Sasaki D; Hara KY; Hasunuma T; Kondo A
    Microb Cell Fact; 2017 Mar; 16(1):44. PubMed ID: 28298220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production.
    Gómez-Pastor R; Pérez-Torrado R; Matallana E
    Appl Microbiol Biotechnol; 2012 May; 94(3):773-87. PubMed ID: 22223102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient extraction of intracellular reduced glutathione from fermentation broth of Saccharomyces cerevisiae by ethanol.
    Xiong ZQ; Guo MJ; Guo YX; Chu J; Zhuang YP; Zhang SL
    Bioresour Technol; 2009 Jan; 100(2):1011-4. PubMed ID: 18760919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain.
    Wilde C; Gold ND; Bawa N; Tambor JH; Mougharbel L; Storms R; Martin VJ
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):647-59. PubMed ID: 22218767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of the L-serine biosynthetic pathway improves glutathione production in Saccharomyces cerevisiae.
    Kobayashi J; Sasaki D; Hara KY; Hasunuma T; Kondo A
    Microb Cell Fact; 2022 Aug; 21(1):153. PubMed ID: 35933377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae.
    Ganguli D; Kumar C; Bachhawat AK
    Genetics; 2007 Mar; 175(3):1137-51. PubMed ID: 17179087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS
    Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase.
    Saitoh S; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1553-9. PubMed ID: 21643701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and monitoring of protease activity in recombinant Saccharomyces cerevisiae.
    Gimenez JA; Monkovic DD; Dekleva ML
    Biotechnol Bioeng; 2000 Jan; 67(2):245-51. PubMed ID: 10592523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.